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Summary

Video encoding is a process that transforms raw video data into a compressed format.
It is used to reduce the storage and/or transmission requirements of video, as uncom-
pressed video data takes up a lot of space. The encoding process requires a lot of
resources in the form of working memory, computational power and still a fairly large
amount of storage if you want to achieve good quality. These resource requirements
are not fixed but depend on the contents of the video being encoded or decoded. This
means that the exact resource requirements cannot be known beforehand and fluctuate
over time. In an environment with restricted resource availability, which may also be
fluctuating, the encoding of video therefore becomes challenging.

A solution to this problem is using a video encoder that is scalable, meaning that it can
adapt its operation to function under some restricted set of resources. We distinguish
between two types of scalability: rate scalability and complexity scalability. The goal
of rate scalability is to have the encoder produce an output bitstream that will survive
transmission across a channel of fluctuating capacity. The goal of complexity scal-
ability is to enable the encoder to continue producing chunks of output within some
deadline, even under fluctuating computational resources.

Complexity scalability is useful when the encoded video must be produced within some
timeframe. If there are no such requirements, it does not matter how much (computa-
tional) time encoding takes. In that case, even if the amount of available computational
resources changes there is no point in adapting to it.

An important goal of scalable video encoding is that at every point in time, we want
to achieve the best quality possible for the amount of resources available at that time.
Auvailable resources must not go to waste, which means that we want to achieve fine-
grained scalability. The encoder must be able to operate at any point in its scalability
range (from minimum to maximum).

In this thesis, we study an H.264/AVC encoder operating at a fixed bitrate under an ar-
bitrarily restriced amount of computational power and with a deadline on every frame,
i.e., the video must be produced in real-time. This scenario is consistent with video
conferencing on a device with limited computational power, such as a mobile phone.

We show that we can guarantee that the encoder does not miss a deadline for encoding
a frame by introducing a complexity budget in the encoder, placing a hard upper bound
on the computational requirements of a single frame. Our complexity budget limits
the number of Sum of Absolute Differences (SAD) computations that are performed,
which is the most expensive operation of the motion estimation process of video en-
coding.

To obtain the best video output quality for a given frame budget we introduce an al-
gorithm that allocates a frame’s complexity budget to its constituents, called “mac-
roblocks”, based on the distortion with the best reference block block found during
motion estimation of the previous frame. A high distortion indicates a bad match and
is a sign that the macroblock could benefit from extra steps of motion search. We show
that this allocation strategy results in higher quality than both the trivial Uniform Allo-
cation strategy and the Motion History Matrix (MHM) [1] allocation technique, which
uses the motion vectors found during motion estimation to estimate the complexity
needs. We achieve quality gains of around 1 dB Peak Signal-to-Noise Ratio (PSNR) at
around 30 dB PSNR encoding the “city” sequence at 1500 kbps.



Chapter 1

Introduction

In which we describe the background and motivation for this thesis. It
specifies our goal and discusses related work.

1.1 Context

Nowadays, video applications are becoming more and more popular. As applications
such as video conferencing start to gain popularity, video processing is no longer the
domain of high-end computing hardware but is also introduced into low-cost consumer
electronics devices.

Many video applications have real-time requirements. For example, if a sequence of
pictures is being captured from a camera, each picture must be encoded and stored be-
fore the next one is captured. If the encoded video has to be sent over a communication
channel to a live viewer, as is the case in video conferencing, every picture must be
encoded and transmitted at least at the rate that the decoded pictures should be shown
at the receiver side. This means individual pictures, called “frames”, have deadlines,
which is a point in time at which the encoding must be finished.

Buffering can be used to loosen these requirements a little, but buffering will only
counteract temporary fluctuations in throughput; if the input or output requirements of
the video are structurally higher than what the encoder is able to keep up with, frames
will be dropped.

Why is video encoding used? It takes a large amount of space to represent video data on
a computer. Video consists of a rapid sequence of images, each image consisting of a
number of image points, each of them having a color. The color of every image point in
every image has to be stored, so the video can be reconstructed and displayed again at
a later time. As you can imagine, this amount of data adds up quickly. Video encoding
changes the representation of the uncompressed video data, so that the representation
takes up a lot less space. Before the video stored in this representation can be displayed
again, it has to be decoded first, which reconstructs the original images that can be sent
to a display (see Figure 1.1).

Video encoding is a form of compression. Its goal is to reduce the size of video in-
formation so it can be more easily stored and distributed. Like most compression al-
gorithms, it is computationally intensive, since a lot of computational effort goes into
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Figure 1.1: The place of video encoding and decoding. A sequence of images is captured from
some image source. It is then encoded (compressed) to some bitstream format for
long-term storage or transmission. Before the video can be displayed, the bitstream
is decoded, after which the pictures can be sent to a display.

searching for efficient representations of the input pictures with the goal of having the
bitstream be as small as possible.

Because Consumer Electronics (CE) devices have limited processing power and be-
cause the resource requirements of video processing are data-dependent, meaning the
requirements cannot be predicted in advance but depend on the contents of video, it be-
comes a challenge to guarantee the real-time encoding or decoding of arbitrary video
streams. Additionally, when the video processing happens on a mobile device, the bat-
tery drain is another factor to take into account, as a mobile device has a limited supply
of power and power consumption is proportional to the amount of computation done.
Available battery power places a limit on the amount of work that can be done before
the battery is drained and the mobile device shuts down.

Since current video encoders and decoders are not prepared to deal with such resource
limitations, device manufacturers have to redesign their applications for every device,
increasing the production cost. Our goal is to design a video encoding system that
continues to produce usable output under constrained resources and performs well on
a variety of devices.

1.2 Motivation

In the past, network connectivity was typically the bottleneck for real-time video appli-
cations on mobile devices. A large amount of research has been carried out both into
making the size of the encoder’s output bitstream predictable (using rate control algo-
rithms) and changing the format of the bitstream such that parts of it can be discarded
without the stream becoming entirely undecodable, merely of degraded quality (using
rate scalability methods).

These days however, most devices are able to use WiFi access points to connect at
high speed to the Internet. Additionally, even the speeds of cellular data networks
are steadily increasing, with the current standard UMTS capable of speeds of up to
21Mb/s. As the bottleneck for real-time video delivery to consumer electronics de-
vices is no longer bandwidth, other bottlenecks become apparent, such as the restricted
computational power available to low-end consumer products.

It is possible to cope with the problem of reduced processing power by limiting the
video encoder and decoder for a given device to an operational mode that requires
less processing power than the “full mode”, such that even under the worst-case video
load possible, the software is guaranteed to meet its deadlines. However, because of
the necessity of assuming the worst-case load, the processing mode will be set too



pessimistically for the majority of the video content processed by the system. Since
less processing also leads to lower quality, the system will not achieve the best possible
video quality even though the resources to achieve high quality may be available. Our
aim is to develop a system that does not have a limited set of operating points, but
can operate smoothly along the entire range of processing power, from minimum to
maximum.

In addition to the restricted processing mode yielding subpar quality in many cases, the
act of finding out the settings appropriate for this mode itself is an act that has to be
repeated by the manufacturer again and again for every kind of device they produce, as
the performance characteristics will be different each time. This is an expensive and
error-prone process for the manufacturer.

The solution to this is to develop software that can perform a video processing task,
such as encoding a frame, under an arbitrary computational time constraint. This com-
putational time constraint can then be selected to guarantee the needs of the system: it
can be set high to achieve high quality, it can be set low to satisfy completion within
a deadline or to conserve battery power. We call this limit on the computational re-
sources the system is allowed to consume the complexity budget, and a system that can
change the amount of processing power it consumes to stay within the budget complex-
ity scalable.

Complexity scalability can be used to allow a system to function under restricted com-
putational power, but it can also be used to scale back the resource consumption of
the tasks in a system so the system can accept more tasks. Complexity scalable video
encoding is useful in the following application areas:

e Video encoding on resource-limited devices. Low-end electronics devices have
limited processing power, and there may be other processes (such as an audio
encoder) that are contending for the processor in parallel with the video encoder.
By being able to bound the processing requirements of the video encoder, we can
ensure that our video encoder works unmodified on any hardware and software
configuration simply by setting the appropriate bounds.

e Video encoding on battery-powered devices. Mobile electronics devices are pow-
ered by a battery. The battery power consumed is proportional to the amount of
calculation that is performed, so by limiting the processing power consumed by
the video encoder, we can extend the battery life of the device.

o Video encoding in a system with hard real-time requirements. Even though the
processing power of the device may not be limited, it may need to be shared with
a number of processes, each of which needs the guarantee of real-time opera-
tion. By placing an upper bound on the processing time of the video encoder,
schedulability of the system can be guaranteed. In essence, every encoder can be
guaranteed its own share of the system resources as a virtual platform.

e Multiple video encoders accepting more work. In the general case, a video
transcoding server takes video in one format, decodes it and re-encodes it in
a different format, usually before sending it off to some client to be displayed.
Such a server may handle multiple clients at once and so may have to transcode
multiple videos at the same time. When the video encoding processing is com-
plexity scalable, the server may reduce the complexity of existing encoding tasks
S0 it can accept more clients.



Complexity scalability has the following advantages:

o Graceful degradation. If the resources needed to do an optimal job are not avail-
able, the software can still accommodate the user by providing reduced (but still
acceptable) service.

e Homogeneous software. A manufacturer of embedded systems can save time and
money on software development for a variety of devices, if he can use a scalable
solution that can make optimal use of the available resources on every device.

e Real-time constraints. In a real-time system, deadlines may be placed on a video
encoding task. A complexity scalable encoding task can be made to meets its
deadline by default, as the deadline can be translated into a complexity budget
that the encoder can be constrained to.

e Processor use corresponds to power consumption. For mobile devices, it can be
desirable to restrict a high-complexity task such as video encoding to preserve
battery life.

In this thesis, we will focus on the video encoding side of video processing, as video
encoding requires a lot more computational power than video decoding.

1.3 Goal

To control power consumption and to make guarantees about encoding deadlines, we
want to be able to bound the complexity requirements of a video encoding process.
Since a frame is typically the unit of video on which a deadline is imposed, we want to
be able to bound the complexity consumption of a single frame.

We also want to have fine-grained scalability. That is, the encoder should be able to
operate across the entire domain of complexity bounds. Operating in a fixed number
of encoding modes would waste available complexity budget if that budget happens to
fall just below the threshold of an operating mode.

Finally, reducing the complexity consumption of the encoder will also reduce the qual-
ity of the video. Our goal is to keep the distortion introduced by restricting the compu-
tational work to a minimum.

In this research, we will concentrate on the latest video coding standard jointly devel-
oped by ISO and ITU-T, called H.264/AVC [2]. H.264 has been adopted as Part 10 of
the MPEG-4 standard and is also known as MPEG-4 Advanced Video Coding (AVC).

1.4 Related Work

Several ways to achieve complexity scalability of a video encoder have been introduced
in literature, focusing mostly on the motion estimation part of encoding.

Our work is based on the work presented in [1] which provides a framework for mod-
eling Rate-Distortion (R-D) performance as a function of power consumption for a



H.263+ video encoder, based on the scalability of three encoding parameters: the num-
ber of Motion Estimation (ME) operations, the number of Discrete Cosine Transform
(DCT) computations, and the temporal resolution of the video.

In [3], H.264 is made complexity scalable by choosing one of four modes of motion
estimation, of increasing complexity. Their work does not deal with allocating the
frame budget among macroblocks, but does offer a way of optimizing mode decisions
under restricted complexity.

In [4], complexity scalability is achieved by doing reduced motion estimation at the
frame level, and reduced DCT at the macroblock level. The drawback is that their
analysis requires access to all frames of the video before encoding begins (i.e. it is not
suitable for a situation where the video is directly captured from a camera).

1.5 Contributions

In this thesis, we first extend the work of He et al. [1] into the domain of H.264 encod-
ing. We apply their motion estimation scalability mechanism to the standard motion
search algorithm in H.264 encoding, and extend it to cover the H.264-specific feature
of inter mode partition decisions (see Section 3.2).

We then make a qualitative analysis of a number of algorithms designed to allocate the
frame budget to macroblocks in such a way that quality is maximized. We introduce
a new algorithm that estimates the complexity needs of a macroblock based on the
distortion achieved during motion estimation. Our algorithm consistently leads to equal
or higher quality output than the algorithm published in [1] (see Section 3.3).

1.6 Overview

The rest of this master thesis is organized as follows. Chapter 2 gives an overview of the
aspects of H.264 video encoding that are relevant to this thesis. Chapter 3 describes the
approach taken to make an H.264/AVC encoder complexity scalable and optimize qual-
ity. Chapter 4 presents our evaluation of the proposed algorithms, and finally Chapter 5
contains our conclusion and recommendations for future work. Appendix A contains
a full list of results for all video sequences that we tested. Appendix B details some
initial results about work that could not be completed withing the scope of this thesis.
A glossary of terms is provided in Appendix C.



Chapter 2

Overview of Video Encoding

In which we present a high-level overview of video encoding. Specifically, the
areas of a video encoder related to the rest of this thesis.

Video encoding is the act of compressing video data. But what does “video data”
mean? Video consists of a number of pictures, called “frames”, each taken at a regu-
lar time interval. The number of pictures taken per second is called the “frame rate”.
A typical frame rate is for example around 25 frames per second for European DVD
video. Every frame consists of a number of image points called “pixels”. For European
DVD, a typical frame resolution is 720 x 576 pixels. The color of every pixel needs to
be encoded, which in computer graphics is usually done by storing three bytes repre-
senting the intensity in a red, green and blue channel for each pixel. This means that in
uncompressed form, a second of DVD video would take up 720-576-25-3 = 31-10°,
or more than 30 megabytes. Since uncompressed video takes up such a large amount
of space, it is expensive to store and impractical to transmit over a network. Even some
harddrives may have trouble transferring data at this rate. The domain-specific com-
pression techniques used in video encoding can reduce the size of the video data by a
factor of 10 with very little loss of quality.

This chapter will give an overview of the techniques used in video encoding according
to the H.264/AVC standard. The part of encoding related to coding analysis, specifi-
cally mode decisions and motion estimation, will be given the most treatment as these
are the most relevant to the rest of this thesis.

2.1 Goal

A video encoder takes uncompressed video data and transforms its representation in
such a way that the representation takes up a lot less space than the original data did.
We will refer to this encoded representation as the encoder’s “bitstream”. The encoded
bitstream cannot be displayed directly; first, it must be decoded by a piece of software
called a “decoder” that reads the bitstream and reconstructs the original video data.

Video encoding is a kind of compression. There are two forms of compression: lossless
compression and /ossy compression. Lossless compression can work on any binary



data, and guarantees that the composition of the encoding and decoding operations
yield the identity function. That is, decoded data is guaranteed to be exactly the same
data that was encoded. Lossy compression on the other hand allows for some differ-
ence between the originally coded data and the reconstructed data. This allows the
compression algorithm to achieve much better compression ratios than using lossless
encoding, but it requires that some amount of information from the input data is dis-
carded. This means lossy encoding is only applicable to some types of data such as
audio and video that are intended for human consumption and can have some amount
of information discarded without becoming incomprehensible, as opposed to things
like executable files or text documents. It also means lossy compression algorithms
have to be developed for a specific domain, because they require knowledge about the
structure of the data they are operating on to decide what information to discard.

The goal of a video encoder is to encode a video signal to the smallest possible bit-
stream size, while keeping the difference between the decoded video and the originally
encoded video small. In video encoding, the difference in the signal introduced by
encoding, meaning pixels that have a different color value in the decoded version than
in the encoded version, is called “distortion”.

Distortion is typically measured in one of two metrics: Sum of Absolute Differences
(SAD) or Sum of Squared Differences (SSD). It can be measured over various elements
in a video: it can be measured over the entire video, over a single frame in the video
or over a block of pixels in a frame in the video. Given two sets of X samples (pixel
values) A(x),B(x),0 < x < X, they are defined like this:

SAD(A,B)= Y |A(x)—B(x)| 2.1)
0<x<X

SSD(A,B)= Y |A(x)—B(x) (2.2)
0<x<X

A notion related to distortion is “quality”. There are two kinds of quality, subjective
quality and objective quality. Subjective quality is the quality as judged by a human
watching the video. Ultimately, the goal of video encoding is to produce videos with
a high subjective quality as the goal of video encoding is always to play the videos
back to a human observer. Subjective quality is hard to quantify, however, which is
why we typically measure objective quality. Objective quality is an attempt to quantify
quality based on the differences between pixel values of the original and encoded video.
Objective quality is historically measured in PSNR, which is derived from the SSD, and
is defined like this:

SZ
PSNR(A,B) =101 — 2.3
( ) 0810 XLSSD(A,B) ( )

Where X is again the number of samples, and S is the maximum value of a sample; for
normal 8-bit pixel values, S = 255. The terms distortion and (objective) quality refer to
the same thing and can be used interchangeably, although for distortion, a lower value
is better and for quality, a higher value is better.

The encoder’s job is to optimize the bitstream for two metrics: to keep both the size of
the bitstream (commonly called “rate”) and distortion low. During encoding, a trade-
off exists between these metrics, as a decrease in the rate will lead to an increase in
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Figure 2.1: How different frame types refer to each other. Each arrow indicates a (possible)
reference from a P or B-frame to an I or P-frame.

distortion, and vice-versa. When we compare encoders or encoder algorithms, we will
evaluate them on their joint R-D performance. An encoder with a better R-D perfor-
mance will be able to encode the same video at a lower rate with the same distortion,
or will be able to reduce the distortion at the same rate.

The next sections describe how an H.264/AVC video encoder works.

2.2 Frames

The basic unit of a video is a frame. A video consists of a sequence of frames, shown
in quick succession. MPEG-based encoders such as H.264/AVC can encode a frame in
one of two ways:

e Intra-coded frames, usually called I-frames or keyframes. These contain enough
information to be completely reconstructed by the decoder using only data in the
encoded frame. They are robust, but need to contain a lot of information so they
are very large.

e Inter-coded frames, usually called P-frames for Predicted, or B-frames for Bi-
directional. These frames can refer to pieces of previously decoded frames, in
lieu of encoding the pieces themselves. By referring to previously decoded sam-
ples, the bitstream can be made smaller because storing duplicate information
can be avoided. Inter coded frames take up less space in the bitstream than intra-
coded frames, but are less resilient against bitstream corruption and take more
computational power to encode.

P-frames only refer to I and P-frames that temporally precede the current frame,
while B-frames refer to I and P-frames that both temporally precede and succeed
the current frame. Note that the use of B-frames requires frames to be encoded
and stored out-of-order. B-frames allow for a lot of R-D improvement, but re-
quire significant special treatment from the encoder to deal with the intricacies of
forward-referencing frames.Other than that, they are not fundamentally different
from P-frames, and the principles presented in this thesis can be easily extended
to include B-frames, so we will not treat them specifically any further.
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Figure 2.2: Data flow in an H.264 video encoder. The rectangles represent processing steps,
while the rounded rectangles represent input, output and an important intermediate
result.

See Figure 2.1 for a schematic view of how the different frame types depend on each
other. For obvious reasons, the very first frame of an encoded video sequence must
always be an I-frame, since there are no decoded frames yet to refer to. After that,
an encoder is free to use inter-coded frames. Because long stretches of inter coding
degrade the image quality, the encoder will usually insert a new I-frame at regular
intervals to “refresh” the picture. The sequence of frames from one I-frame to the next
is called a Group of Pictures (GOP).

The size of a GOP is at the encoder’s discretion and can vary wildly: because I-frames
take up a lot of space in the bitstream, the interval between keyframes can be as much
as several hundred frames for streams where space-efficiency is the major concern, or
a couple of dozens of frames if consistent quality is valued more. Many encoders will
also try to detect a scene change in the video and start a new GOP at that point to
establish a new frame of reference for motion estimation.

Although frames are the most recognizable building block of a video, they are not
encoded in their entirety. For the purposes of encoding, frames are divided up into
small units called macroblocks. Every macroblock is a block of 16 x 16 pixels, and
is encoded and decoded separately. Upon decoding, the individual macroblocks are
recombined to form the original frame again. Macroblocks are the fundamental unit of
encoding. The next section describes how macroblocks are encoded in an H.264/AVC
encoder.

2.3 H.264/AVC Video Coding

H.264 is a transform-based, block-based, motion compensated video format jointly
developed by the International Standards Organization (ISO) Moving Pictures Expert
Group (MPEG), and Telecommunication Standardization Sector (ITU-T). It has been
adopted as Part 10 of the MPEG-4 specification, and is both known as H.264/AVC
(ITU-T name) and MPEG-4 Part 10 or MPEG-4/AVC (ISO name). The flow of data in
an H.264 encoder is shown in Figure 2.2, with all the processing that is done.

The basis of the video compression is formed by the Hadamard Transform, Quantiza-
tion and Entropy Coding steps. These steps are excellently suited for the compression
of natural images and are essentially the same as used in the JPEG still image cod-
ing standard. To this compression basis, Motion Estimation is added to improve the
compressive qualities of the encoder for moving pictures. The extra processing steps,



those on the bottom row of Figure 2.2, are necessary to do effective Motion Estima-
tion. Dequantization and the Inverse Hadamard Transform are actually decoding steps;
every motion compensated video encoder also contains (part of) a decoder, so that the
encoder can faithfully reconstruct the image as received by the decoder and use that as
its reference picture for the motion estimation process.

The different parts of Figure 2.2 are explained below.

Input picture stream The input picture stream is a sequence of bitmap pictures. A
single picture in the stream is called a frame, and the sequence is encoded on a frame-
by-frame basis. A frame is a rectangle made up of of sampling points called pixels, each
having a color value, and all frames have the same dimensions. Instead of the Red-
Green-Blue (RGB) colorspace commonly used in computer graphics, MPEG-based
video formats operate in the YCbCr colorspace, which means that every sample value
is encoded in two orthogonal channels: a luminance channel (Y) and a chrominance
channel (C). The chrominance consists of two coordinates (Cb and Cr) in a color plane.
Because the human eye is much more sensitive to luminance than chrominance, the
resolution of the chrominance channel is quartered before encoding. This subsampling
already halves the size of the video data, at a slight loss of image fidelity.

In the rest of the thesis, when we talk about samples or pixels, we mean the pixel values
in either the luminance (brightness) or one of the two chrominance (color) channels of
the video. Each channel is compressed separately, and we will not explicitly refer to
them any more. When we are evaluating quality however, we will only measure distor-
tion between the luma channels of two videos. The chroma channel is much easier to
encode and the human eye is much less sensitive to it, making the luma distortion the
most important metric.

H.264 is a block-based format, which means that every frame is divided into blocks of
16 x 16 pixels in size, called macroblocks. Every block is encoded separately according
to the steps specified here.

Mode Decision and Motion Estimation Mode decision and motion estimation are
both analysis steps that are done before the actual encoding.

The goal of mode decision is to select one of several ways in which the macroblock
can be encoded, so that the R-D performance is optimized. During mode decisions,
a number of alternative ways to encode the block will be evaluated, after which the
most optimal mode will be chosen. Mode decisions will be discussed in more detail in
Section 2.5. As part of evaluating a mode, motion estimation may be done.

The goal of motion estimation, sometimes called motion compensation, is to exploit
temporal redundancies in the input picture stream. By temporal redundancies, we mean
blocks of pixel values that are the same or nearly the same in different frames. By
describing the relative motion of the macroblocks of the previous frame with respect to
the current frame, and only storing the pixel values that have changed, a lot of space can
be saved in the bitstream as the unchanged pixel values do not have to encoded again.
Because a frame that is motion estimated is not self-contained, motion estimation is
only done for inter-coded frames, not intra-coded frames.

To find these redundant block of pixels, the encoder searches the reference pictures,
which are previously encoded frames, for a pixel block of the same size and same
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pixel values as the macroblock it is trying to encode. If a matching block can be
found, only a pointer to the reference block needs to be sent to the encoder. As it is not
always possible that there is a block in one of the reference pictures that exactly matches
the current macroblock, it is allowed that there is some difference. The encoder then
encodes the pointer to the reference block, and the difference between the reference
block and the current block. The smaller this additional difference is, the less space it
will take up in the bitstream, and the more efficient the compression is.

Motion estimation is a computationally expensive step, because any pixel position in
any reference frame is a potential match for the current macroblock, so in principle
all possible points need to be evaluated. In practice, fast motion estimation algorithms
employ heuristics to drastically cut down the number of search points.

Note that although in older video coding formats motion estimation was always per-
formed against the previous frame, in H.264 the encoder is free to use up to 16 frames
as reference frames. Using more reference frames increases the memory requirements
for both encoder and decoder since all reference frames have to be kept in memory and
increases the complexity requirements of motion estimation by a lot since every refer-
ence frame has to be searched. The advantage is that the chances of finding a matching
block are increased.

Motion estimation is discussed in more detail in Section 2.6.

Hadamard Transform The next step in a transform-based encoder such as H.264 is
to transform the representation of the macroblock — either the macroblock pixel values
or the residual after motion estimation — from their sample values into the frequency
domain of a set of waveform functions of varying frequency, similar to a Discrete
Fourier Transform. In H.264, Walsh functions are used, which repeatedly take either
the value —1 or 1 at some frequency.

The result of this operation is a coefficient matrix for a predefined set of functions of
varying frequency. In this representation, correlations between adjacent pixels from a
natural image source can be represented with fewer bits than if they had to be stored
directly. This step is said to exploit “spatial redundancy”.

H.264 uses 2 different 4 x 4 matrices and a 2 x 2 matrix for the transform operation.
Which of these matrices is applied is based on the type of macroblock that is encoded.
The precise details of the transform operation are out of the scope of this work, but the
details can be found in [5].

It remains to note that the transform is lossless; it merely changes the representation of
the input values, as an input for the next step.

Quantization Quantization is the operation that provides the actual compression. In
quantization, all values in the transform coefficient matrix of the Hadamard Transform
are divided by a constant Q, and the result is rounded down to the nearest integer.
This reduces the absolute value of the coefficients, which is done because the next step
(entropy coding) is more efficient at storing numbers with small absolute values. Q can
be chosen by the encoder for each individual macroblock. The larger Q, the better the
compression and the smaller the resulting bitstream, but the more information will be
lost due to rounding errors.
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Entropy Coding In the last stage, all data that needs to be encoded for a mac-
roblock, such as the displacement of the reference block, quantized transform coef-
ficients and the value of Q, are stored and encoded using a lossless Variable Length
Coding (VLC) compression algorithm. In H.264, the allowed algorithms are Context-
Adaptive Variable Length Coding (CAVLC) and Context-Adaptive Binary Arithmetic
Coding (CABAC).

The bitstream that is the result of this step is the encoded video stream that will be
stored or transmitted to the decoder.

Dequantization Dequantization is the inverse operation to quantization, and simply
multiplies all the coefficients of the transform matrix by the Q parameter. The result of
this step is an approximation of the original coefficients prior to the quantization step,
depending on the value of Q chosen by the encoder.

Inverse Hadamard Transform Finally, to produce a picture in the spatial domain
again, the dequantized coefficient matrix is multiplied with the inverse transform ma-
trix. This step and the previous one are the exact same as performed by the video
decoder, and the result is the same picture as decoded by the decoder.

2.4 Rate Control

The video encoder can be run in one of two modes: fixed quantizer or fixed rate. The
difference lies in how the quantization parameter Q is chosen, which is the parameter
that controls the quality versus compression trade-off. The higher O, the better the
compression but the more information is lost and the more quality will degrade.

Fixed quantizer mode means that the quantization parameter Q that is used during the
quantization step is set to a fixed value. This does not imply that Q needs to be constant
across all macroblocks; Q can be chosen differently for intra-coded blocks and inter-
coded blocks, I-frames and P-frames, but the values for Q are chosen before encoding
starts and remain the same throughout. In this encoding mode the rate, i.e. the size
of the output bitstream, can not be controlled but depends on the contents of the video
that needs to be encoded, and how well motion estimation is able to find matching
macroblocks. The larger the contrast and the finer the detail in the video, the higher the
rate.

When a video is encoded in fixed rate mode, some target rate is supplied to the encoder.
The encoder will start to encode the video with some initial value for O, measure the
rate of the bitstream, and adjust the Q parameter to try to match the supplied rate. If
the bitstream turns out to have lower rate than allowed, Q is lowered, and the other
way around, if the bitstream is too large, Q is increased. The encoder will continue
monitoring the rate and keep adjusting Q to match the desired bitrate. In this mode, the
quality is variable depending on the contents of the scene. The finer the detail and the
higher the contrast, the higher Q will need to be to achieve the desired rate, so the more
information will be lost and the lower the quality of the resulting video.

Any change to the video encoder that allows it to encode the same amount of informa-
tion with less bits improves the performance of the encoder in either mode. In fixed
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Figure 2.3: Mode decision algorithm for a macroblock. The macroblock is encoded in all possi-
ble modes, and the most optimal one is stored in the final bitstream.

quantizer mode, such a change directly leads to a lower rate. In fixed rate mode, the
change allows Q to be lower to achieve the same rate, so better quality is achieved. For
example, the closer the blocks found during motion estimation matching the current
macroblock, the less coefficients still need to be encoded for the current block and the
better the R-D performance of the encoder.

In the following sections, we will describe the analysis step, where mode decision and
motion estimation is done, in more detail, as those are most relevant for the remainder
of this thesis.

2.5 Mode Decisions

The encoder is free to encode every macroblock in one of several modes. There are
several intra modes, and several inter modes. Similar to intra and inter-coded frames,
intra-coded blocks can be decoded by themselves, while inter-coded blocks refer to
blocks of pixels in a reference frame. If the current frame is an I-frame only intra
modes are allowed, otherwise both intra and inter modes may be chosen. This means
that it is possible that blocks can be intra-coded even in an inter-coded frame; this
can be useful if no good block match can be found during motion estimation, to avoid
having to encode a large difference.

When a macroblock is encoded in an intra mode, just its quantized coefficient matrix is
stored, along with the quantization parameter Q. When a block is encoded in an inter
mode, the index of the reference frame that it refers to is stored along with a motion
vector that indicates the displacement from the macroblock’s natural position to the
position in the reference frame, in addition to the coefficients and the quantization
parameter.

Actually, H.264 has an additional feature called intra prediction, which allows intra-
coded blocks to use the sample values of previously decoded blocks in the same frame
to predict the values of the current block, in a way similar to motion estimation. Though
predicted intra blocks cannot be completely decoded by themselves, they only depend
on blocks from the current frame, and this feature allows for extra size reduction of the
bitstream.

Every encoding mode of the macroblock will result in a different number of bits stored
in the bitstream, and a different distortion when reconstructed. The process of se-
lecting the best mode to encode a macroblock in is called “mode decision”, and is
shown graphically in Figure 2.3. For every mode , the resultant rate (R(u)) and dis-
tortion (D(u)) are calculated, and finally the best mode is chosen by minimizing the
Lagrangian cost function:
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(a) Intra (b) Inter

Figure 2.4: Macroblock mode subdivisions. 16 x 16 and 4 x 4 for intra coding, 16 x 16, 16 x 8,
8 x 16 and 8 x 8 for inter coding. A single 8 x 8 block can be further partitioned into
blocks of size 8 x 4, 4 x 8 and 4 x 4.

cost(u) = D(u) +AR(u) (2.4)

A is a parameter that can be varied to favor either a small bitstream or low distortion.

The difference between the modes is the way a macroblock is partitioned into submac-
roblocks. The goal of the mode decision step is to find the most efficient representation.
For example, a 16 x 16 macroblock can be divided into smaller macroblocks of size
8 x 8, each of which is coded separately with its own motion vector and transform co-
efficients. For example, when the picture changes texture inside the macroblock, split-
ting the macroblock into smaller macroblocks may yield a smaller representation than
a single transform of the entire block. The encoder evaluates all modes and searches
all possible motion vectors before finally selecting the mode with the lowest cost.

For intra-coded macroblocks (see Figure 2.4(a)), this step consists of checking the two
possible macroblock subdivisions (one 16 x 16 block or 16 4 x 4 blocks). For the
16 x 16 mode 4 prediction directions are available, and in the 4 X 4 mode 9 prediction
directions are searched. This prediction entails using the sample values of adjacent,
previously coded blocks to approximate the sample values of the current block, and
only coding the difference between the approximation and the actual value as described
above. Intra prediction is similar to inter prediction, but heavily limited in scope. The
mode with the lowest combined R-D cost is selected as the final mode for encoding.

For inter-coded macroblocks (see Figure 2.4(b)), the encoder tries a special SKIP mode
to see if the entire macroblock can be predicted without storing any coefficients at all,
does a motion search for every one of 7 possible macroblock partitions (16 x 16, 16 x 8,
8x 16,8 x 8, 8x4,4x 8 and 4 x 4) and selects the one with the lowest cost among the
inter and intra modes. Motion search is explained further in the next section.

2.6 Motion Estimation

Motion estimation is done for every inter mode except SKIP (the SKIP mode is ex-
plained in Section 2.6.2). Motion estimation, or motion compensation as it is some-
times called, takes advantage of the fact that in a typical video the only change between
two successive frames will be either camera movement, or movement of an object in-
side the scene. As a result, there will be duplicate content in the frames. If the encoder
can exploit this redundancy by describing the movement between frames, a lot of space
in the bitstream can be saved by because less information will have to be encoded.

This is achieved by searching for a position in the available reference frames for sample
values having minimal distortion with respect to the current macroblock. The only

14



search range

current
MB

Figure 2.5: Full Search algorithm. All candidate motion vectors within the search range are
tested, causing a calculation of the cost function for every vector.

thing that needs to be encoded then is the difference between the sample values of the
source macroblock and the sample values in the reference frame at the position where
the best match has been found. This difference is called the “residual”.

Because both the residual and the motion vector have to be encoded, the best reference
block is one that minimizes the cost function:

COStME (rﬁ'v) =Dyg (n’iv) + 7\'RME (rr_iv) (2.5)

Where Dy (#iv) is the distortion obtained between the current macroblock and the
macroblock in the reference frame displaced with the vector #iv, measured in SAD or
SSD, and Ryg (miv) is the number of bits required to encode the motion vector in the
final bitstream. A is used to weigh the domains of the two metrics, and is determined
experimentally by the encoder developer.

The goal of this cost function is to compare candidate motion vectors. If a motion
vector @ has a lower cost than a motion vector b, encoding the block with it will take
up less space in the bitstream using niv = d than using mv = b, and hence the R-D
performance will be better.

To obtain the best compression, we have to search for the best motion vector v using
a motion estimation algorithm: iterate over a set of candidate motion vectors, calculate
the value of the cost function for every one, and select the one with the lowest cost.

2.6.1 Motion Estimation Algorithms

The goal of the motion estimation algorithm is to find a relative motion vector that
minimizes the cost function specified in the previous section.

Full Search

The simplest approach to this problem is to simply check all possible candidates motion
vectors and select the best one (Figure 2.5). This algorithm is called Full Search, and
it simply calculates the cost function of all (dx,dy) within some fixed range called the
“search range”. Full Search is a very inefficient algorithm, because it checks many
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A current mb

Figure 2.6: The Predicted Motion Vector (PMV) for the current MB is the median MV of the
previously encoded macroblocks A, B and C.

vectors that have a low probability of being good candidates. To improve the speed of
motion estimation, so-called “fast motion estimation algorithms” have been developed,
which use heuristics to efficiently navigate through the search space.

These algorithms have the typical disadvantage of heuristic search that they can get
stuck in a local instead of a global minimum. The increased efficiency is usually worth
the trade-off of decreased accuracy however, and motion estimation algorithms are
tested for robustness on a variety of testing sequences.

A good way of improving the efficiency of the motion search is to approximate a good
initial motion vector for the search based on the motion detected in neighboring mac-
roblocks, and then refining that vector with a heuristic search algorithm. In fact, this
has even become a part of the H.264 standard, in the form of the Predicted Motion
Vector.

2.6.2 Predicted Motion Vector

Without extra information, a motion search would have to start at the displacement
vector (0,0), and try to detect the motion in the scene from that.

However, in a real video sequence, macroblocks will typically move in conjunction if
they are part of a larger moving object or if the camera is panning. This means that
adjacent macroblocks typically have the same motion vector. The Predicted Motion
Vector (PMV) takes advantage of this fact. The PMV is calculated based on previously
processed adjacent blocks (Figure 2.6), and is used as the starting point of motion
estimation. This can significantly speed up the motion estimation process [6].

Additionally, if the encoder decides that the PMV is “good enough”, meaning that the
distortion is below some threshold, it may decide to encode the current macroblock as
a SKIP block. In essence, this is equal to encoding it with MV = PMV and D = 0, but
no bits have to be used in the bitstream to encode this information. At the decoder side,
the referenced block is completely copied in place of the current block.

2.6.3 Uneven Multi-Hexagon Search

A heuristic motion search algorithm is used to refine the initial motion vector estimate.
Uneven Multi-Hexagon Search (UMHS) [7] is the standard search algorithm used in
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Figure 2.7: All stages of Uneven Multi-Hexagon Search. (1) asymmetrical cross search; (2) block search;
(3) hexagon search; (4, 5) refined hexagon search.

H.264. The algorithm consists of 4 separate stages, shown graphically in Figure 2.7.
After every stage, the best motion vector candidate (i.e., the one that has produced the
lowest value for the cost function) discovered, is used as the starting vector for the next
stage.

The stages used in UMHS are as follows:

1. First, an asymmetrical cross search is performed (points marked ‘1’), which cov-
ers an area twice as wide as it is high based on the observation that in most videos
movement tends to be horizontal instead of vertical.

2. Then an exhaustive search of a 5 x 5 block is performed (marked with ‘2’) around
the step ‘1’ vector that had the lowest cost. In the example figure, the center
vector is chosen.

3. Then a multiple hexagon search is performed (‘3’) around the minimal cost vec-
tor from step ‘2°. In the example, again the center vector is chosen.

4. Finally the motion vector is refined using an iterative hexagon search (points
marked ‘4’ and ‘5°).

In between each step, a check for early termination is done. If the distortion encoun-
tered so far is close to the minimal achieved distortion (SAD) among the blocks A, B,
and C from Figure 2.6, the search skips directly to the final refinement of steps 4 and 5.
The rationale here is that adjacent blocks are very likely to have similar distortion, so
the search can be terminated early, thereby saving processing time. More information
on the early termination mechanism of UMHS is available in [8].
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2.6.4 Subpixel refinement

To improve the accuracy of motion estimation, H.264 allows motion vectors with a
resolution of a quarter of a pixel. For every mode, after performing a fullpixel search
with the UMHS algorithm described in the previous section, another step of subpixel
refinement is done in two stages: first all 8 halfpixel vectors around the best fullpixel
vector are checked, and then all 8 quarterpixel vectors around the best halfpixel vector
are checked.

The halfpixel samples are obtained by interpolating the fullpixel values by taking the
weighted average of 6 surrounding pixels, while quarterpixel samples are obtained by
averaging fullpixel and halfpixel samples.

2.7 Summary

In this chapter, we have given an overview of video encoding for the H.264/AVC for-
mat. We have described the encoder architecture, and delved deeper into mode deci-
sions and motion estimation, which are the most important aspects with regard to this
thesis. The next chapter describes our approach to making the encoder complexity
scalable.
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Chapter 3

Complexity Scalable Video
Encoding

In which we describe our approach to adapting the H.264 encoder so we can
bound the complexity at the frame level and to minimizing the distortion
incurred from reducing the complexity.

In this chapter, we describe our approach to adapting the H.264 encoder so that we
are able bound the required complexity at the frame level while maximizing quality.
The chapter is comprised of two parts. First, we introduce a technique for achieving
complexity scalability at the macroblock level. Next, we introduce an allocation strat-
egy that allocates the frame budget to macroblocks in such a way that distortion is
minimized.

3.1 Complexity

Before we can define complexity scalability, we must first define complexity and how
we measure it. Complexity is the time needed for a computer to execute a program and
it can be measured in either processor instructions, clock cycles or seconds. All of these
three units can be converted into one another, as there are fixed and well-understood
mappings between them.

A program is a set of instructions for the computer’s Central Processing Unit (CPU).
The CPU executes the instructions of a program in discrete steps called “clock cycles”.
Every CPU has a “clock speed”, which is the number of cycles it performs per second.
These days, clock speeds are on the order of billions of cycles per second, or several
GHz.

Every instruction of a program takes some fixed number of clock cycles to execute.
How many instructions depends on the specific instruction and the hardware support
provided by the processor. For example, an ADD instruction typically takes less clock
cycles to execute than a MUL (multiply) instruction, although if there is dedicated
hardware in the processor for multiplication, both may take only 1 clock cycle. We can
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map from instructions to clock cycles by summing the clock cycles required for every
instruction'.

The number of clock cycles can be divided by the CPU’s clock speed to obtain the
actual “wall-clock” execution time of the program. The reverse mapping on the other
hand, from wall-clock time to clock cycles, can be used to translate the deadline in
seconds of a program in a real-time system into an upper bound of clock cycles that the
program is allowed to spend executing without exceeding the deadline.

Our goal is to be able to arbitrarily bound the complexity of the video encoding pro-
cess, meaning limiting how many instructions are executed so some clock cycle limit
(and ultimately a time limit) is not exceeded. The actual bound can to be determined
upon execution and depends on the CPU’s architecture, clock speed, desired maximum
power consumption and finally time-sharing load.

3.2 Scalability Mechanism

We need to identify an area of the encoder that we will modify to achieve complexity
scalability. The requirement is that we must be able to reduce the amount of instructions
that are executed, while still producing an output bitstream that is valid according to the
H.264 format specification (i.e., can be decoded). This means that we cannot simply
abort processing a frame when the complexity bound is reached. Instead, a part of
the encoder must be selected that performs operations which are intended to improve
encoder R-D performance, but are not strictly necessary for producing a valid output
bitstream.

It is allowed, and even expected, that the distortion we achieve doing reduced compu-
tation will be higher than if we did full computation. Another way of putting this is
that the quality will decrease. In the second part of this chapter, we will look for ways
to minimize the introduced distortion.

3.2.1 Alternatives

Below we list some alternatives for reducing the computational need of the encoder.

Modifying the input picture stream’s spatial and/or temporal resolution

This is done in [1]. By reducing the input stream’s resolution we can reduce the number
of macroblocks that have to be processed per time interval, thereby also reducing the
complexity requirements of processing by some fixed factor F, which is the ratio of
macroblocks per frame before and after resizing.

Due to various early termination heuristics used in the encoding algorithms, the com-
plexity needs of the video stream are data dependent, and cannot be known a priori.
Scaling the computational need by a factor F' does not change the fact that we cannot

This view is a bit simplified as CPU architectures these days are highly complex and try to employ
caching, pipelining and parallelism to increase performance. The general principles still hold, though, and if
all details are known a mapping can still be established.
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predict the complexity needs of a frame beforehand. Furthermore, changing the resolu-
tion is not really part of the encoding process but rather of pre and post processing, and
can be done in addition to the rest of the scheme described in this thesis. Therefore, we
will not treat it further.

Restricting the number of Hadamard transforms

This approach is taken in [1], where the number of macroblocks that get transformed
is bounded, and in [4], where the number of coefficients that are calculated in every
transform is bounded. Since every transform computation consists of a fixed amount
of mathematical operations, this approach makes it possible to place a hard bound on
the number of computations that is performed.

Restricting the search for intra predictions

During the mode decisions for the intra coding modes, a number of prediction modes
are checked, where samples from neighboring blocks can be copied from one of 4
directions for the 16 x 16 block or one of 9 directions for the 4 x 4 block, to predict the
sample values of the current block. Every prediction check requires a calculation of
the distortion for that choice. By restricting the number of prediction alternatives that
are checked, the complexity requirements can be bounded. This technique is presented
in [9] with an algorithm that minimizes distortion.

Restricting the search for inter predictions

When each of the 7 inter mode partitions other than the SKIP mode is checked for a
macroblock, a number of motion searches have to be performed, one for every subblock
in the partition. Every step of the motion search incurs a calculation of the distortion
between the source macroblock and the reference macroblock at that point. We can
bound the complexity of this process by limiting the number of distortion computations
that are done, as is done in [1].

Conclusion

Not every part of the video encoding process has the same computational requirements.
It is well-known that motion estimation is the most computationally intensive, taking
up to 60—-80% of total encoding time [7]. Furthermore, motion estimation is the step in
encoding that introduces the most variance into computational requirements, depending
on the contents of the video (unlike for example the transform computation or intra
predictions). This means that if we do not target motion estimation for complexity
scalability, we still cannot predict actual complexity.

Motion estimation is therefore both a required target for complexity scalability and also
the target with the most potential impact on the entire complexity of the encoder. In
this thesis, we focus our efforts on making the motion estimation process complexity
scalable.
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3.2.2 Complexity Scalable Motion Estimation

We want to be able to bound the complexity consumed by the motion estimation step
of video encoding. Because all macroblocks in a video are analyzed and encoded
separately, we focus on the motion estimation of a single macroblock.

Motion estimation consists of the examination of a number of different inter mode
partitions, each of which consists of the motion search of a number of submacroblocks
(see Section 2.5). Every step of motion search in turn consists of the computation
of the distortion of a motion vector, plus some arithmetic to calculate the next vector
candidate. The measure of distortion used is typically SAD (see Section 2.1).

The complexity cost of a SAD computation dominates the cost of a single motion
search step and the cost of motion estimation in general. Thus, we can view the entire
motion estimation process as a giant sequence of SAD computations. By reducing the
number of SAD computations performed, we can save complexity. Of course, this will
lead to fewer candidate motion vectors being examined, and the less motion vectors are
examined, the less likely it will be that the optimal motion vector will be found. This
is why reduced complexity will lead to reduced R-D performance.

Complexity Budget

To make the complexity of the motion estimation of a macroblock controllable, we
introduce a “complexity budget”. The complexity budget will determine the number
of motion vectors the search algorithm is allowed to examine. Equivalently, it signifies
how many SAD computations can be performed.

We choose this as the unit for complexity budget instead of a unit like clock cycles,
as it is independent of the physical machine the encoder is running on. At the same
time, it is a unit that is convenient to measure and to reason about in the context of the
encoding process, and it is trivial to modify the motion estimation code such that the
budget is observed: every extra vector examined decreases the budget with 1, until the
budget is exhausted.

The actual complexity of a SAD calculation, in a unit that relates to the physical ma-
chine such as clock cycles, can be determined either through measurement or through
analysis of the code. This knowledge can then be used to determine the maximum
complexity budget for a given upper bound in clock cycles.

Changes to the Motion Estimation Algorithm

Since we have chosen a convenient unit of complexity, the changes to the motion es-
timation algorithm are trivial. On every inspection of a motion vector and the calcu-
lation of the SAD for that vector, the budget is decreased by one. When the budget is
exhausted, the search is terminated, and the best motion vector found up until then will
be the final motion vector for the macroblock.

It gets slightly more complicated when we consider that the budget for a single mac-
roblock has to be spread over multiple mode partitions (16 x 16, 16 x 8, 8 x 8, etc...)
and subblocks. There are two issues:
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Figure 3.1: The order in which the motion estimation budget is spent on the (sub)macroblocks.

int sad(int x0, int y0, int w, int h, charxx A, charxx B) {
int x, y;
int sad = 0;

for (y = yO0; y < y0O + h; y++)
for (x = x0; x < x0 + w; X++)
sad += abs( Blyl[x] — Alyl[x] );

return sad;

Table 3.1: Algorithm to compute the Sum of Absolute Differences between two blocks in two
pixel arrays, in the C programming language. A and B are two-dimensional arrays
representing the frames. The block to be compared has its top-left corner at (xq,y)
and is w X h pixels large.

1. Allocation of the budget to different partitions; and

2. The budget needs to be calibrated to some unit. We will select the evaluation of a
16 x 16 block as the unit for our complexity budget. However, the evaluation of
a smaller block size will consume less (actual) complexity, and should therefore
also consume less of the budget.

We solve the problem of allocating to different partitions in the following fashion: we
process the partitions in-order, from large to small as shown in Figure 3.1. The reason
for this is that the larger block sizes yield most of the R-D gain (up to 80% for the first
4 versus all 7 block partitions [10]), and should therefore be given preference. We treat
the smaller block sizes as mode “refinements”, used only when the complexity budget
allows it, i.e., when the higher-mode motion searches have been fully completed.

As for the second point: the actual complexity cost of a motion vector evaluation mostly
depends on the cost of the SAD computation, and the SAD cost of the SAD computa-
tion is linearly proportional to the number of pixels examined, as can be seen from the
algorithm to compute SAD in Table 3.1. The complexity is proportional to w - &, that
is, the area of the block being examined.

23



Because the unit of our budget is the SAD computation of a single 16 x 16 block,
smaller blocks consume only fraction F,, of a single budget point for every SAD com-
putation, where Fj, is their area relative to the surface of the 16 x 16 block:

_w,u~hy
H716-16

3.1)

Where w,, and h,, are the width and height of a submacroblock in mode .

With this scheme, we achieve a linear relationship between our own unit of budget
(the number of 16 x 16 SAD computations) and actual consumed CPU complexity, as
shown in our experimental result (see Section 4.1).

It should be noted that the UMHS algorithm [7] contains early-termination conditions
[8], intended to abort the search when it is unlikely that a better match will be found.
We have not changed these provisions, as they have been tested and accepted as a part
of the standard. However, the presence of these early termination conditions makes it
possible that not all of the allocated complexity budget is actually consumed. It is up
to a control algorithm higher up in the allocation hierarchy to make sure this leftover
budget is used effectively.

3.2.3 Complexity Model of a Frame

The mechanism introduced in the previous section controls the complexity of encoding
a macroblock using a complexity budget, representing the number of 16 x 16 SAD
computations that the encoder can do. If we know the actual complexity of one such
SAD computation on our machine, and the complexity of the rest of the non-scalable
operations, we can build a model that we can use to determine the actual complexity of
encoding a video frame, based on our complexity budget:

Cfmme :(X'Bf'rame+B'M+Y (3.2)
Bframe= Y, Bu (3.3)
0<m<M

Where M is the number of macroblocks, B, is the complexity budget for macroblock
m and Bfraye is the complexity budget for the entire frame. Cgpype is the complexity
required for encoding the entire frame in clock cycles. a is the number of clock cycles
required for performing a single 16 x 16 SAD computation, f is the number of clock
cycles required for additional non-scalable processing of a macroblock (which includes
intra mode decision, quantization and transform), and vy is the overhead cost in clock
cycles of processing the frame.

Once the values of a,  and vy have been determined for a particular processor, this
model can be used to find the complexity budget Bqpe that has to be used to bound
the frame’s complexity to obtain a desired actual complexity Cyrame-

Note that in a fully intra-coded frame (an I-frame), inter modes are not allowed and so
are not evaluated. This means that B ¢4, = 0, and that I-frames always require a fixed
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amount of complexity that can be calculated as Cframe = B- M + 7. This value is the
minimum of the scalable encoder’s complexity range.

This thesis does not deal with the question of how Cygpe should be chosen. This en-
tirely depends on the environment in which the scalability mechanism is used. For
example, Cframe can be chosen to be some constant. If due to early termination during
motion estimation the consumed complexity budget is smaller than the assigned com-
plexity budget, the system can choose to add this leftover budget to the budget of the
next frame (if buffer space allows), or not, depending on whether the reason for using
complexity scalability is to meet encoding deadlines or simply to conserve power.

3.3 Frame Budget Allocation

We now have the ability to encode macroblocks in a complexity scalable way and we
are able to bound the complexity of the frame by selecting appropriate complexity
budgets for every macroblock (as shown in (3.2) and (3.3)).

However, when we want to bound the frame complexity to a given actual complexity
Cframe, this tells us what the maximum value of B 4. can be, but not how to choose
the B,,. We can use any allocation we choose, but the way we allocate the complexity
will have an effect on the resultant R-D performance of the output video. Our goal is
to minimize:

min D(Bo,B1,...,By-1) st Y. Bu<Bfume (3.4)
0<m<M

In this section, we will present an allocation algorithm that improves distortion over
the default uniform allocation and that performs equal to better than the algorithm
presented in [1].

3.3.1 Constraints

Every extra point of budget that we allocate to a macroblock means at least one other
motion search step is performed, having the potential to improve the best motion esti-
mation vector match for that macroblock and thereby improving the R-D performance
of the encoder. However, this improvement is not guaranteed, and we also cannot
predict at what point the improvement will occur (see Figure 3.2). In fact, the whole
reason that we perform motion search is exactly because we do not know the position
of the best motion vector beforehand. We have to perform the actual motion search of
all macroblocks before we can know the shape of their C-R-D curves, showing how the
R-D cost changes as a function of complexity (C).

We can also not pick and choose, in the middle of encoding a frame, which mac-
roblock to do an extra step of motion estimation on. Though macroblocks of a frame
are encoded separately, they are not independent: the predicted motion vector of a mac-
roblock depends on the resultant motion vector of the blocks preceding it. This means
that the blocks must always be encoded in the order specified by the standard, which is
scan order.
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Figure 3.2: Example of the Complexity-Rate-Distortion (C-R-D) curve of a macroblock as the
complexity is increased. The R-D cost of a macroblock is a monotonically non-
decreasing function of the assigned complexity (C) whose shape cannot be predicted.

Since we do not have random access to macroblocks, the allocation of complexity must
be done before the first macroblock is processed, and therefore without any information
about the shape of the C-R-D curve of the macroblocks at all.

We can never know the optimal allocation before encoding a frame, so we will have to
estimate it from other information that is available to us. This means that will have to
rely on statistics that are gathered in previous frames to predict the complexity budget
needs of the macroblocks in the current frame.

3.3.2 Allocation Considerations

The simplest allocation algorithm would be to distribute the available complexity bud-
get equally over all macroblocks (B, = ﬁ - Btrame). However, this allocation is prob-
ably suboptimal. Increasing a macroblock’s budget increases the amount of motion
estimation that is done for that block and increases the chances of a good motion vec-
tor match, but only if such a better match is available.

e [t can be that the predicted motion vector is already optimal (in case of con-
stant movement through a large part of the video), in which case adding extra
complexity will not improve the match.

e [t can be that no good match is available because too much has changed in the
scene, in which case the block will probably be intra-coded and all effort spent
on motion estimation is wasted.

Because we can not inspect the situation for the macroblocks in the current frame, but
instead have to rely on knowledge obtained in previous frames, we need some sort of
metric and allocation algorithm to predict the complexity needs of a macroblock.

In [1], a method called Motion History Matrix (MHM) is introduced that allocates
complexity to macroblocks inversely proportional to the amount of stillness detected
in the macroblock. The idea here is that macroblocks containing a lot of movement will
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need more complexity, while in areas of little movement the predictors will usually be
sufficient and less motion search is needed. This work was implemented in H.263.

Our testing has shown that in H.264, MHM allocation does not yield significantly better
results than the naive uniform allocation, and in sequences with a lot of movement or
a shaky camera reduces to being the same allocation”. The addition of the Predicted
Motion Vector to the H.264 standard means that the presence of motion by itself is not
enough to predict complexity needs (as motion that can be predicted by the PMV does
not need additional motion search).

We will therefore try to find an allocation algorithm that performs better. In our case,
we base the allocation not on the movement in the video, but on the achieved distortion;
the idea being that areas with high distortion need more work to improve than areas that
already have low distortion.

In the rest of this section, we introduce our allocation strategy and algorithms. In the
next chapter, we then compare our algorithms to the naive and MHM allocation to see
which one gives the best performance.

3.3.3 Hypothesis

We hypothesize that a high distortion indicates a need and a possibility for improve-
ment: if a macroblock had a high distortion in the previous frame, this is an opportunity
to invest more computation into it in this frame to find better motion estimation match
and decrease the achieved distortion.

On the other hand, the inverse could equally well be true: by investing complexity into
blocks that have good quality, we prevent those blocks from going bad. Bad blocks
may be unsalvageable anyway, leading to intra coding and wasted complexity.

Although our intuition says the initial hypothesis is more likely, we will try both ap-
proaches and see which one yields the best results.

3.3.4 Allocation Algorithms

In this section, we explain all allocation algorithms that we will evaluate to see which
one yields the lowest distortion at any given complexity bound. Two of them will be
reference algorithms and three of them will be new, each having two variants.

All algorithms follow the same pattern: the algorithms collect some metrics xo0, ..., Xp—1N-1
for every one of M macroblocks in N frames. A share of the frame budget is then allo-
cated to a macroblock proportionally or inversely proportional to the share of its metric
value to the sum of all metric values in a frame. In fact, the metrics represent weights.

The proportional allocation of the complexity budget B, , to macroblock m in frame
n as a function of the metrics xq, ...xy—1,, is calculated as follows (for this and all
equations in this section 0 <m < M,0 <n < N):

'xm.n
Brel.n = Z ’xi,n 'Bfmme(n) 3.5)

0<i<M

2For example, refer to the graphs of the sequences “Foreman”, “City”, “Crew” and “Bus” at 500 kbps in
Appendix A.4.
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Where B fqme(n) is the frame complexity budget for frame n. Inversely proportional
allocation is calculated as follows:

1 X
Buw=37|1" Z’””; — | *Brrame(n), M>1 (3.6)
in
0<i<M

With the restriction that ¥ o<,y Xm.n 7 0.

Re-use of Unused Budget

Because the motion search of a macroblock can terminate early when no further im-
provement of the motion vector is expected (see Section 2.6.3), it can be possible for
the motion estimation to not fully consume the complexity budget allocated to it. To
prevent this unused budget from being wasted, we re-allocate it to remaining mac-
roblocks using the same proportional or inversely proportional allocation method. This
is achieved by evaluating the allocation (3.5) and (3.6) not before encoding the frame,
but before encoding each macroblock, using the proportion of the macroblock’s metric
to the sum of the remaining macroblock’s metrics, and the remaining frame budget.

We define Bfyqme(n,m) to be the remaining frame budget available before encoding
macroblock m in frame n, calculated as follows:

Bframe(nvm):Bframe(n)_ Z Bi,n (3.7

0<i<m

Where B, , is the actual complexity budget consumed while encoding macroblock i in
frame n. Now we can define proportional allocation with re-use as follows:

'x o
B = ﬁ -Bjrame(n,m) (3.8)
in
m<i<M

Inversely proportional allocation with re-use is calculated as fllows:

B frame(n,m) ifM—m=1
B}n n= 1 Xm,n . (3.9
, 1— ' -B n,m) fM—m>1
M—-—m—1 Z Xin rame (n;m)
m<i<M

Allocation with re-use will never allocate less budget to a macroblock than allocation
without re-use, but it may allocate more if for some macroblocks B,, < B, .. Mac-
roblocks that have already been processed before the extra budget becomes available
will not benefit from the extra complexity budget, only macroblocks that still have to
be encoded.

The following sections will describe the metrics x,, , that are used in the various algo-
rithms.
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Uniform Allocation

Uniform allocation is the naive allocation strategy, which we only use for comparison
purposes. Uniform allocation allocates the same amount of budget to every macroblock
by giving every macroblock the same weight:

X = 1 (3.10)

There is no difference between proportional and inversely proportional allocation with
this metric.

Motion History Matrix (MHM)

The MHM allocation algorithm is presented in [1]. It calculates a measure of how
“static” a block is (meaning a lack of movement is detected) and allocates less complex-
ity to blocks that are deemed static. To this end, a Motion History Matrix is maintained,
which contains a counter of the number of frames in a row in which the macroblock
has not moved. “Not moved” is defined by the motion vector being equal to (0,0).

The elements of the MHM are our metrics x,, ,. Initially, all values are set to 1, and
after motion estimation of a macroblock m, the values are updated based on the result
of motion vector 7ivy, ,:

Xmni1 = { Y1 AL V=0 3.11)

1 if | 17tV |# 0

The allocation is done with the inverse proportional allocation strategy. This has the
effect of reducing the complexity allocation to blocks that are mostly stationary.

The goal of this algorithm is to identify movement. Areas with movement will need
more steps of motion search to find a good match than areas with low movement and so
should get a higher budget. On the other hand, a weakness in this algorithm is that in
scenes with a lot of movement, most of the motion vectors | iV | 0, which leads to
Xm.n+1 constantly being reset to x,, ,41 = 1. In the limit, this reduces MHM to Uniform
Allocation for high-motion sequences.

Distortion-based allocation

Our hypothesis is that the distortion achieved while encoding the macroblock in the
previous frame is a better indicator of the need for complexity budget. Distortion is a
measure independent of movement which more accurately reflects how “hard” it was to
encode the macroblock. Consider a large object moving at a constant speed throughout
the video: although all macroblocks comprising the object will be moving (thereby re-
setting their MHM value and ensuring they get a larger share of the complexity budget),
their predicted motion vectors will already be the best motion vector available, and they
will not benefit from additional motion search budget. Incidentally, the distortion will
be low in this case.

We consider two possible measures of distortion, Direct Distortion and Displaced Dis-
tortion (see Figure 3.3). The first one is the distortion achieved encoding the current
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Figure 3.3: Measuring distortion of a macroblock in the previous frame. The macroblock with
the thick black border is the one currently being encoded. The distortion achieved
encoding the square with the thick dashed border is used as the predictor for the
distortion of the current block. 3.3(a): the same macroblock in the previous frame
is used. 3.3(b): the macroblock position is displaced with the current macroblock’s
(estimated) predicted motion vector (EPMV).

macroblock in the previous frame (Figure 3.3(a)). The second one also calculates the
distortion achieved encoding the block in the previous frame, but it will try and dis-
place the position of the block with the motion vector of the current macroblock. This
yields a better approximation of the distortion, by measuring the block of pixels in the
previous frame that will be in the macroblock’s location in the current frame.

We can not actually displace with the motion vector of the current macroblock how-
ever, because we can not know the real motion vector of the macroblock until after the
motion estimation has actually been done. We therefore need an estimation of the mac-
roblock’s motion vector beforehand. A natural candidate would be the macroblock’s
Predicted Motion Vector (PMV). Unfortunately, a macroblock’s PMV depends on
neighboring macroblocks in the same frame, and since we have to do complexity allo-
cation before any encoding is done, we cannot use the real PMV. We therefore have to
approximate the PMV. We will resort to using the block’s motion vector in the previ-
ous frame. This is an approximation that requires that movement is constant between
frames.

As our measure of distortion, we will use SAD. The metric for direct distortion in
frame n+1 is:

Xmant+1 = SAD( Fy(pm) » Fri(ﬁm) ) (3.12)

And the metric for displaced distortion is:

Xmpn+1 = SAD( F;z(p_;n +’ﬁvm,n) ) Frf(p_;n +’ﬁvm,n) ) (3.13)

30



Where F;, is source frame n and F is reference frame n (frame n after being encoded
and decoded). F;, (V) is the 16 x 16 block in frame n at the position specified by vector
Vv, P is the vector specifying the position of macroblock m and #iv,, , is the motion
vector of macroblock m in frame n.

We will evaluate both the proportional and inversely proportional allocations of both
of these metrics.

Residual-based allocation

Although we only control the motion estimation process of macroblock encoding, the
metrics gathered by the distortion-based allocation algorithm of the previous section are
influenced not only by the motion estimation performed, but also by the quantization
imposed by the later stages of encoding. If there were no or very little quantization, all
distortion values would all be very low because the motion estimation residual could
be encoded without loss. If all distortion values are very close to each other, the al-
location again reduces to Uniform Allocation, with all macroblocks having the same
weight. This is why we also measure a distortion that is only dependent on the motion
estimation process: the residual.

The residual is the difference between the sample values of the macroblock to be en-
coded and the final motion estimation match (see Section 2.6). It is also a measure for
how hard it is for the encoder to encode the macroblock (as a bigger residual means that
more values have to be compressed and stored in the bitstream), specifically, how hard
it is to find a good motion estimation match for the macroblock. The same assumption
holds as with the distortion-based allocation: a larger residual indicates bad encoder
performance. By allocating additional complexity budget to macroblocks with a large
residual, we expect to improve the motion estimation match, thereby decreasing the
size of the residual and increasing the encoder’s performance.

‘We measure the residual also in SAD. The metric for macroblock m in frame n+ 1 is
defined as follows:

Xmpn+1 = SAD( Fn(ﬁm) s F,:,l (ﬁm +’ﬁvm,n) ) (3.14)

3.4 Summary

Figure 3.4 shows an overview of the metrics used for budget allocation in each of our
proposed allocation algorithms. In the next chapter, we will present our experimental
results and compare our proposed algorithms to the Uniform Allocation and MHM
allocation.

Figure 3.5 shows the allocation hierarchy for the entire system, from frame complex-
ity down to fullpixel motion search. There are a number of allocation levels in the
hierarchy that our research did not touch on, which we recommend as future work.
Notably, an allocation between intra and inter mode decisions, and an allocation be-
tween fullpixel and subpixel search can yield improved scalability.
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Figure 3.4: Schematic overview of the three distortion metrics used by our proposed allocation
algorithms. Top to bottom in this diagram shows the progress of frames through time;
we are currently encoding frame n + 1. The frames on the left are source frames,
while the frames on the right are the encoded versions of every frame. The squares
indicate the area that is used for each distortion computation. The solid arrow is the
MYV of the macroblock in frame n, which is used as EPMYV in the current frame.
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Figure 3.5: Overview of the allocation hierarchy from frame budget down to fullpixel motion
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while the text next to the arrows indicates how an element’s complexity budget is al-
located to its constituents. Arrows to steps that are not currently complexity scalable
in our mechanism are labeled “N/A” (not applicable).
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Chapter 4

Experimental Results

In which we evaluate the scalability mechanism introduced in the previous
chapter for predictive power, and the allocation algorithms for qualitative
performance.

This chapter presents our findings evaluating the complexity scalability mechanism and
allocation algorithms introduced in the previous chapter. We show that the complexity
scalability mechanism allows us to bound complexity to an arbitrary number of clock
cycles. We also show that our budget allocation algorithms yield lower distortion than
either MHM or Uniform Allocation using rate-controlled encoding.

4.1 Complexity Scalability Mechanism

We have implemented the complexity scalable motion estimation mechanism outlined
in Section 3.2 in the H.264/AVC reference encoder software, JM 14.2. Our mechanism
introduces a complexity budget, limiting the number of motion vectors that are exam-
ined during motion estimation. The unit of our budget is the examination of a single
vector for a 16 x 16 block of pixels, and each vector examination consumed a part of
the budget proportional to the size of the examined block.

The goal of introducing the motion estimation complexity budget is to bound the ef-
fectively consumed computational complexity of encoding a single frame, measured
in some physical measurement like clock cycles. This goal is satisfied if there must
be a linear relationship between consumed points of the complexity budget and the
actual consumed complexity. In this section, we will evaluate whether our proposed
mechanism meets this goal.

To evaluate whether there is a linear mapping from complexity budget to actual com-
plexity measured in clock cycles, we have encoded a short fragment of a testing video
sequence at various complexity bounds!. The video is encoded without subpixel mo-
tion estimation, and with a search range of 32 pixels. During every encode, the com-
plexity bounds are constant and equal for every frame. The result is that every frame is
encoded at every complexity bound.

I'We have encoded the “Foreman” video sequence at CIF resolution (352 x 288), for 30 frames. The
mechanism is independent of the video, so no further videos have been examined.
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Figure 4.1: Actual complexity of encoding, measured in clock cycles (4.1(a)) and CPU instruc-
tions (4.1(b)), as a function of the complexity budget B fqm.. The top point cloud
(“Frame”) is the total complexity spent encoding a frame, the middle point cloud
(“MB?”) is the total complexity spent on macroblock analysis, and the bottom point
cloud (“ME”) is the complexity spent on motion estimation.

For every frame, we measure the consumed complexity budget, which can be slightly
less than the initially allocated budget due to rounding errors and failure to re-use,
and the actual consumed complexity in clock cycles. This yields a set of points that
relate complexity budget (Bframe) to actual complexity (Cyrame). If there is a linear
relationship between complexity budget and actual complexity, all points should lie on
a straight line.

We’ve plotted the set of points in a graph (see Figure 4.1(a)). To gain a greater in-
sight into the complexity consumption of the encoder, we’ve measured three different
complexity consumptions:

e Frame: the total computational complexity spent encoding the frame.

e Macroblock (MB): the sum of all time spent analyzing and encoding the mac-
roblocks the frame. The difference between this and the previous value indicates
the overhead processing time of a frame.

e Motion estimation (ME): the total computational complexity spent on motion
estimation during the frame. The difference between this value and the previ-
ous one indicates the amount of non-motion estimation processing done for a
macroblock.

The data of Figure 4.1(a), collected on an Intel Pentium 4 machine with a clock speed
of 3.0 GHz running Linux, is rather noisy however. This is due to the fact that we’ve run
our experiments on a time-sharing system. The CPU has a Timestamp Counter (TSC),
which tells us the number of clock cycles elapsed since the CPU powered on. We
measure the computational time spent by taking the delta between two measurements
of the TSC over some piece of code.

However, on a time-sharing system, our encoder process can be pre-empted and some
other process can be run. In the meantime, the TSC will keep on increasing and the
delta will no longer reflect the running time of just our application but include the
cycles spent executing the pre-empting process.

To prove that the noise of Figure 4.1(a) is due to pre-emption, and not due to the
encoder not obeying the complexity budget, we need a different measurement.
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Most processors offer another way to profile applications, with a feature built into the
CPU called Performance Counters. With a driver that integrates into the operating
system [11], we can access various metrics regarding the CPU performance’s. The
Intel Pentium performance counters do not allow us to measure the clock cycles spent
per process. However, they do let us measure the number of machine code instructions
executed per process.

Figure 4.1(b) shows the complexity consumption of the video encoder, measured in
executed instructions. The noise from Figure 4.1(a) is absent. The measurements for
both graphs have been collected during the same run of the encoder, which means the
exact same code is executing at the exact same complexity bound. Because the exact
same set of instructions has been executed to obtain both graphs, we can conclude that
the noise in Figure 4.1(a) is solely due to the effects of preemption. Ignoring the noise,
our mechanism establishes a linear relationship between complexity budget B 7,4, and
actual complexity Cfrrame-

Looking at the measurements of the clock cycles, every one of the three point clouds
approximates a line. Knowing that there are 396 macroblocks in a video of CIF resolu-
tion (M = 396), we can estimate the parameters of the model for the frame complexity
of equation 3.2:

Cfmme =0o- Bframe + B M+ v

o = the slope of the line approximated by the ME point cloud
_34-10°—2.4-10%
- 1-103

B = the value of the MB line at Bf,qme = 0 over M
_5.75-10°

396

= 1000

=1.45-10°

v = the difference between the Frame line and the MB line
~7.5-108-55-108=2-108

Note that these values for o, § and 7y are only valid for the machine the experiments were
performed on. However, on that machine they are the same for every video sequence
(only varying in M), so after an initial calibration to obtain the right values the model
can be used on any machine.

We can now use this model to predict the complexity requirements of any frame at any
resolution bounded to a particular budget, or alternatively, find the budget necessary
to bound the complexity to the desired level. This means our goal of limiting the
complexity requirements of encoding a frame to an arbitrary point (within the range
allowed by the encoder, of course) is achieved. Furthermore, the encoder can operate
along the entire complexity range, by selecting the appropriate complexity bound.

What we can tell from the measurements, is that the encoder has a large amount of
overhead for processing a frame, and that it does a large amount of non-scalable work
related to motion estimation. The scalability afforded by the scalable motion estimation
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is actually not very good (about 16%). It should be noted that JM is a piece of soft-
ware that is designed for research purposes, and favors code clarity over performance.
For example, it does a lot of memory block copying, which is not conducive to perfor-
mance. In an optimized encoder, the difference would be a lot larger, making motion
estimation indeed the most expensive task and making the complexity scalability a lot
more effective.

In fact, our experiments with x264, an open source H.264 encoder which has been
heavily optimized for performance, show that the complexity scalability implemented
in that codec offers up to 60% scalability.

4.2 Complexity Allocation Algorithms

We’ve shown that it is possible to select a complexity budget for the frame By ame
such that a particular complexity bound measured in clock cycles is satisfied. In this
section, we evaluate the allocation algorithms specified in Section 3.3, whose purpose
it is to allocate the selected complexity budget to macroblocks in such a way that R-D
performance is maximized.

We evaluate these algorithms with respect to the achieved joint C-R-D performance. To
evaluate the C-R-D performance, we fix the bitrate of the encoding using the standard
rate control algorithms of the JM encoder, and evaluate the distortion as a function of
complexity budget.

However, we will not present the distortion numbers directly. Instead, we will present
our results in the PSNR scale, as that is the traditional scale for presenting results with
respect to signal fidelity. Our hope is that use of the PSNR scale will give the reader a
better intuition of the quality levels involved in the results. To give an idea of the scale,
20 dB is not very good quality, 30 dB which is acceptable quality and 40 dB and higher
are very good quality.

We have examined a number of testing video sequences at a fixed bitrate. The se-
quences are different video scenes captured from analog media and saved in an un-
compressed format, commonly used to test the performance of video encoders. All
are available on-line [12]. The sequences we used have been chosen to have medium
to very high motion to showcase the differences between the allocation algorithms.
The encoding bitrate has been chosen to yield a PSNR of around 30 dB, which yields
reasonable quality without saturating the rate requirements of the video. The “Bus”
sequence has also been encoded at a much lower and much higher bitrate, to see the
effects of different bitrates (and hence, different quality ranges) on the algorithms. All
videos were encoded without subpixel motion estimation, a search range of 32 pixels
and 1 reference frame. See Table 4.1 for a full list of the sequences, encoding rates,
and results achieved without complexity constraints.

For our comparative graphs, all videos were encoded with the same complexity budget
for every frame. No re-use of leftover budget between frames was done. We measure
quality in PSNR for every video as a function of the frame budget. Note that on the x-
axis, we do not plot consumed budget, but assigned budget. We want the best possible
quality for our available budget, so algorithms that achieve lower quality because they
underallocate need to be penalized.
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Sequence Frames Bitrate Classification Avg complex.  Quality
Foreman 300 250 Medium motion 1.9-10° 30.84 dB
City 600 500 Medium motion 1.7-10° 31.20dB
Crew 600 250 Medium motion 2.8-10° 31.00dB
Stefan 300 1500 High motion 2.1-10° 31.06dB
Husky 250 4000 High motion, fine detail 3.6-10° 28.20dB
Bus 150 500  Very high motion 3.5-100 26.57dB
Bus 150 1500  Very high motion 2.5-10° 31.64dB
Bus 150 6000  Very high motion 1.9-10° 38.46dB

Table 4.1: The list of testing sequences used and the rates tested. Each video is encoded at 30
frames per second. All videos are CIF resolution (352 x 288) with the exception of
“Stefan”, which is SIF resolution (352 x 240). Bitrate is in kbps, Quality is in dB
PSNR. Average complexity is the average unbounded complexity budget consump-
tion of each frame in the sequence, while Quality is the quality achieved at the given
rate without a complexity bound.

Graphs of the full results are available in Appendix A. However, since there are so
many, we will only show a couple of the measurement graphs in the following sec-
tions in the interest of brevity. The sequence that we will most frequently refer to is
the sequence called “Bus”, as it is the one that shows the most visible difference in
algorithms during our testing?.

Two conclusions can immediately be drawn from the graphs:

The results are noisy

There is a lot of noise in the graphs, especially the “Stefan” sequence and “Bus” se-
quence at 6000 kbps.

Apparently, it is possible that encoding with a higher complexity budget yields lower
quality, which is the opposite of what is desired and expected. How can this happen?

One of the factors is the fact that macroblocks are highly dependent on each other.
When the motion estimation for one macroblock yields a motion vector, that vector
will influence the starting point motion vector of at least 3 of the following blocks.
One extra point of budget, equal to one extra step of motion estimation, may lead to a
better motion vector for block A, while at the same time changing the predicted motion
vector for blocks B, C and D. If this leads to B, C and D missing their optimal motion
vector, the global end quality is actually worse with the extra point of complexity than
without. See Figure 4.2 for a graphical example.

Another reason is that two consecutive points in the C-D graphs are actually from two
different encodes of the video at two different complexity bounds. Since the complex-
ity budget is different, this will affect the motion vectors and distortion of the mac-
roblocks, which will change the distribution with respect to the previous point. This
may ultimately lead to a lower overall quality than was achieved with a lower budget.

Especially in the “Stefan” sequence, the noise is very prominently visible. This is
mostly due to the last few seconds of the video, where camera pans very rapidly over

2In the Bus sequence the camera constantly zooms out, which means that predictors are not as useful as
when the camera is making a constant panning motion.
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Figure 4.2: Visualizing the dependency between macroblocks. The PMV of block B is based on
the MV of block A. In 4.2(a), both blocks have some complexity budget, and together
the blocks achieve an R-D cost of 130. In 4.2(b), block A has an additional point of
complexity budget, which changes its MV. Consequently, this changes B’s PMV,
causing its search algorithm to have a different starting point and ending up with a
different final MV. Although the complexity budget has increased and A was able
to decrease its cost, the total cost of both blocks has now increased to 150 instead of
decreased.

a tribune filled with spectators. This part of the sequence contains a lot of fine details,
which leads to a large difference between “hit” and “missed” motion vectors, and in-
troduces a lot of noise. This noise is so large that it is even visible in the global video
results.

Additionally, at higher qualities, the noise becomes more prominent in a PSNR graph.
PSNR is based on the Sum of Squared Differences (SSD), but is inverted. As can be
seen in Figure 4.3, as distortion decreases, the slope of the PSNR function increases,
and the same difference in distortion will lead to a larger difference in PSNR. There-
fore, at high PSNR values, any noise in the SSD values will become exaggerated on
the PSNR scale. This is very visible in the “Bus” sequence at 6000 kbps.

Ignoring the noise introduced by these factors, we can conclude that the quality in-
creases as a function of the complexity.

The effective scalability range is limited

There is only a small interval showing a difference between the algorithms. After some
complexity threshold the quality of the video is saturated, and no or very little extra
quality is gained from added complexity.

To quantify this, we have calculated at what point across the scalability range, mean-
ing from minimum to maximum consumable complexity budget, 95% of achievable
quality is obtained using Uniform Allocation. Minimum complexity is achieved when
B frame = 0; maximum complexity is the amount of budget consumed when we don’t
bound complexity. Because every frame can have a different maximum complexity,
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Distortion (SSD)

Figure 4.3: The function that calculates PSNR from SSD is of the form PSNR = log(ﬁ) (see
Section 2.1). The shape of this function is such that the slope is higher the lower the
SSD values get. Le., as the distortion decreases, quality increases, and the variance
between two values becomes greater.

Sequence Bitrate Max cplx. Cplx.at95% Fraction

Foreman 250 1.9-10° 2.7-10% 0.14
City 500 1.7-10° 2.7-10° 0.01
Crew 250 2.8-10° 2.9-10* 0.10
Stefan 1500 2.1-10° 6.2-10° 0.03
Husky 4000 3.6-10° 2.3.10% 0.06
Bus 500 3.5-10° 2.9-10* 0.08
Bus 1500 2.5-10° 1.1-10* 0.04
Bus 6000 1.9-10° 4.8-103 0.02

Table 4.2: At what fraction of the complexity scalability range of every video is 95% of the
attainable quality achieved. The fraction of quality is measured in Sum of Squared
Differences, since SSD is a linear scale as opposed to PSNR. “Maximum complexity”
is defined as the averaged unbounded complexity of the frames in the sequence.

we aggregate all the maximums to a single value by taking the average. To quantify
quality, we resort back to distortion as given by SSD. This is because SSD is actually
a linear scale, in contrast to PSNR which is a logarithmic scale. We have measured
the point at which 95% of the decrease in SSD is achieved between minimum and
maximum complexity.

Table 4.2 shows the results. It can be observed that the saturation happens at a fraction
of the budget of what the unbounded motion estimation process would normally con-
sume, the largest fraction in this table being at 14%. This means that complexity can be
reduced by a lot without adversely affecting quality, regardless of allocation algorithm.
However, because it cannot be known beforehand at what complexity bound saturation
occurs, it is still advisable to use the allocation algorithm with optimal performance in
all cases.

Since there is hardly any discernible difference between the allocation algorithms after
quality is saturated, in the next sections we will highlight only the areas where the
complexity budget is limited and a difference is visible.
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4.2.1 Global Measurements versus Per-Frame Measurements

It should be noted that the effectiveness of using different allocation algorithms varies
heavily per frame. In some frames, all algorithms perform nearly identically, whereas
in other frames the difference between algorithms is quite distinct. Appendix A.5
shows some examples of the difference between individual frames, and how that in-
fluences the global results.

For some frames, it does not really matter what kind of allocation algorithm is used,
as there will be very little difference between the performance of the algorithms. This
happens when the motion in the frame can accurately be described using the predicted
motion vectors. In such cases, no matter how the complexity is distributed, the optimal
allocation is automatically attained. It also means that the most differences will be
visible in frames where the predictors need a large amount of refinement, such as when
the camera is zooming or objects in the scene are accelerating.

For the remainder of this chapter, we will compare the allocation algorithms in vari-
ous aspects, until we find the one with the best C-R-D performance. We will look at
the global results for each sequence, because they will show the performance of the
algorithms averaged over many frames and so are more representative for the average
performance difference.

4.2.2 Proportional Allocation versus Inversely Proportional Allo-
cation

First off, we will evaluate whether our initial hypothesis was correct, i.e. whether it
is more beneficial to allocate more budget to macroblocks with higher distortion, as
opposed to macroblocks with lower distortion.

In Figure 4.4, and in detail in Section A.1 of the appendix, we compare the positive and
negative allocation variants for all of our distortion metrics. As can be seen, allocation
proportional to distortion always yields equal or better quality with respect to inversely
proportional allocation.

This means that our original hypothesis was correct: it is better to allocate more to
macroblocks with a high distortion, with the goal of decreasing the distortion by doing
extra motion estimation and increasing the chances of a good match.

For the remainder of this chapter, we will only consider the proportional allocation
strategy.

4.2.3 Direct versus Displaced Distortion

In this section, we evaluate “direct” versus “displaced” distortion. These two algo-
rithms base their allocation on the achieved distortion between the previous source
frame and reference frame. The difference is that the direct distortion algorithm uses
the distortion between the macroblock in the same location as the current macroblock
in the previous frame, while the displaced distortion algorithm uses the distortion in
the previous frame of the 16 x 16 block that is most likely going to be in the position
of the current macroblock in this frame.
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Figure 4.4: Proportional versus inversely proportional allocation for the “Bus” sequence at 500
kbps.
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Figure 4.5: Direct versus displaced distortion allocation, for the “Bus” sequence at 500 kbps.

See Section A.2 in the appendix for a full overview of the C-R-D performance of all test
sequences. Again, we will show the “Bus” sequence at 500 kbps here as the example
(see Figure 4.5).

As can bee seen from the data, there is no appreciable difference in the performance
of the algorithms. This is actually unexpected, as it would stand to reason that the
displaced distortion would be a better indicator for the current macroblock. There are
a couple of reasons this would not be the case:

e The motion vector used to calculate the displacement is not the real motion vec-
tor, but an approximation; we use the same motion vector as found in the previ-
ous frame. The motion vector can be wrong for the current frame.

e Most motion vectors are not very long; a couple of pixels horizontally and verti-
cally. This means that there is a large overlap between the macroblock’s natural
position and the displaced block, causing only slightly changed distortion values,
which are not large enough to cause a significant difference in allocation.

The second explanation is in our view the most probable reason for this phenomenon.

4.2.4 Direct Distortion Allocation versus Residual Allocation

The residual is the distortion between the macroblock in the previous frame, and the
best motion vector candidate in the reference frame before that. It is a measure for
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Figure 4.7: Comparison of uniform Allocation, MHM allocation and proportional residual-based
allocation, “Bus” sequence at 1500 kbps.

how hard it was to find a good motion estimation match for the macroblock. We have
already established that it is better to allocate more complexity to a macroblock if it
turns out to be hard to find a match for it (i.e., the size of the residual is large).

Full results are available in Appendix A.3, while Figure 4.6 shows the results for the
“Bus” sequence at 500 kbps. The “distortion” allocation shown in this graph is the
direct distortion of the previous section. However, since both distortion allocations are
practically indistinguishable, we simplify and just call it “distortion”.

Residual-based allocation performs equally and in some cases slightly better to distortion-
based allocation. It has the added advantage that the allocation is independent of the
quantization factor used by the encoder.

We conclude that the proportional allocation based on the residual metric, is the best
of our proposed allocation algorithms. It performs equally well or better than the other
proposed algorithms in all cases.

4.2.5 Algorithm Comparison

We now compare the best of our proposed algorithms, Residual-Based Allocation, to
Uniform Allocation, and the MHM algorithm introduced in [1]. The full results are
available in Appendix A.4. Figure 4.7 shows the most distinctive results for a single
video.

We can clearly see that MHM allocation performs equally or better than Uniform Al-
location, and residual allocation performs equal to or better than MHM allocation. The
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difference is hard to quantify as it highly depends on the video, the bitrate and the com-
plexity bound, but can be as much as up to 1 dB PSNR at 30 dB for the “Bus” sequence
encoded at 1500 kbps.

Since we can substitute our residual-based allocation algorithm any place where the
MHM algorithm is used, and the C-R-D performance of the encoder would remain the
same or improve, we recommend our algorithm in all cases where the other one would
be used.

4.3 Conclusions

We have evaluated the budget-based complexity scalability mechanism, and shown
that it allows us to bound the complexity of the video encoder to a desired number of
clock cycles. Although the scalability mechanism does not have a significant impact
on the complexity of the JM encoder, the same mechanism can be applied to commer-
cial H.264 encoders where the impact on complexity consumption will likely be a lot
bigger.

Using this scalability mechanism, we have evaluated various complexity budget allo-
cation algorithms for C-R-D performance by encoding a number of videos at a fixed
rate and comparing the resulting C-D graphs.

The C-D graphs can be quite noisy. Noise in our measurements is introduced by the
dependency of macroblocks on each other, and the independence of successive runs
with a different complexity bound. The noise is exacerbated at high quality levels
because of the PSNR scale. Still, we can see that quality increases when complexity is
increased, up to a certain point.

The quality saturation point comes rather early in the entire scalability range. The
sequences we’ve tested all achieved 95% of their full complexity quality at at most
15% of full complexity. Quality increases quickly with a few steps search in the 16 X 16
block size, and only marginally after that.

Because the H.264 motion estimation process uses predicted motion vectors, in frames
with little or constant motion the predicted motion vector will already be the best mo-
tion vector for the macroblock. This means that adding extra complexity will not im-
prove the motion vector, and in these frames the allocation algorithms will perform
nearly identically. The difference between algorithms is most prominent in frames
where predictors are not as useful, such as zooming and acceleration. This difference
does make it harder to see the differences between the algorithms when looking at the
global quality of a video.

We have seen that allocation proportional to distortion yields higher quality than al-
location inversely proportional to distortion. This confirms our initial hypothesis that
high distortion indicates the possibility of improvement when investing extra complex-
ity. With our current allocation method, it does not matter whether the block used for
distortion measurement is displaced so it is more accurately measured over the block
of pixels that will be in the macroblock’s position in the current frame, as the overlap
between blocks is very large.

‘We have seen that it is even better to allocate based on the residual than on the distor-
tion. The residual is a more direct measurement of the effectiveness of motion estima-
tion, and is not influenced by the quantization step of encoding. Because the motion
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estimation is the only part we directly control, this allows for a more accurate feedback
loop.

Ultimately, our proportional residual-based allocation outperforms both the Uniform
Allocation and the MHM Allocation algorithms from literature by up to 1 dB PSNR.
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Chapter 5

Conclusion

In this work, we have set the goal to make H.264 encoding complexity scalable. We
have done so by introducing a complexity budget, and tying this complexity budget to
the number of motion vectors examined during motion estimation. This bounds the
number of SAD computations that are done during motion estimation, thereby bound-
ing the complexity consumed by the encoding process of a single frame.

We have shown that the complexity scalability mechanism along with the complexity
budget allows us to bound actual complexity, measured in clock cycles, to an arbitrary
number within the scalability range of the encoder. Although the scalability afforded
by this mechanism does not have a large influence on the total complexity of the JM
compiler, the mechanism works and will be more useful in a more optimized H.264
encoder.

We have presented and evaluated three different algorithms intended to allocate the
complexity budget of a single frame across its constituent macroblocks, while maxi-
mizing the encoder’s C-R-D performance. Our algorithms are based on three different
measurements of distortion: distortion achieved encoding the current macroblock in the
previous frame (direct distortion), distortion achieved encoding the 16 x 16 block that
will be at the position of the current macroblock in the previous frame (displaced dis-
tortion), and the best distortion achieved during motion estimation of the macroblock
in the previous frame (residual). Of all these algorithms, we’ve examined both a vari-
ant that allocates proportionally to these metrics, and a variant that allocates inversely
proportional to them.

We have evaluated these algorithms, and seen that allocating proportionally to distor-
tion yields a better C-R-D performance than allocating inversely proportional.

We have seen that there is no significant difference between the direct distortion allo-
cation and the displaced distortion allocation.

Finally, the residual-based allocation performs equally well or better than the end-to-
end distortion-based algorithms in all cases. Additionally, it performs equally well or
better than both the Uniform Allocation, where the frame budget is uniformly allocated
to all macroblocks, and the MHM allocation introduced in [1].

Although the use of predicted motion vectors in H.264 means the number of frames
where the complexity allocation algorithm actually matters is limited, and quality is
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quickly saturated with just a small fraction of the possible complexity budget, our
proposed Residual-based proportional allocation algorithm should always be used. It’s
C-R-D performance is equal to or better than all other algorithms in all cases.

5.1 Future Work

We can recommend future work for both our scalability mechanism and the allocation
algorithms.

Scalability Mechanism

The mechanism presented in the Section 3.2 is a very simple approach to making mo-
tion estimation with mode decisions complexity scalable. Our scalability mechanism is
fixed, but it is possible that better results may be achieved by dynamically adapting the
scheme to conditions encountered during encoding; for example, allocate more com-
plexity to examine smaller macroblock partitions if it seems likely that the macroblock
will eventually be encoded in a small partitioned mode instead of a large one.

As those modifications would necessarily be heuristic, they would need extensive test-
ing. We recommend them as future work.

Some possible avenues of improvement are:

e Do not inspect the modes in the fixed order presented in this work, but vary
the order in which the modes are inspected to increase the likelihood of a good
match early on in the search process. This is done in [3], where the inspection
order of the modes of the current macroblock are based on the modes of the
neighboring macroblocks, and in [13] where the order is determined by the R-D
cost progression of the major block modes (16 x 16, 8 x 8 and 4 x 4).

e Intra prediction is a different area of mode decisions involving search. This can
be made complexity scalable in a similar vein to our inter prediction scalability.
Then macroblock budget needs to be allocated between intra prediction and inter
prediction, in such a way that the budget is used in the best way.

e Do not spend the budget linearly over all the blocks in a given mode until it is
exhausted, but divide it up. Right now, if the budget runs out while estimating
some submacroblock that is not the last block of the mode, all remaining blocks
will have infinite cost (since no cost calculation at all can be done for them). This
will make it very unlikely that the mode will be chosen for encoding. Since this
only happens in the last mode that is examined, it remains to be seen if this has
a significant impact.

e Right now, the motion estimation budget is spent linearly through all phases of
the UMHS algorithm. It may be desirable to skip some phases of the algorithm
and go immediately to to refinement when it is determined that the budget is
about to run out. As with the previous concern, this will only occur in the last
macroblock, but it may be an advantageous strategy when the budget is not spent
linearly but allocated across blocks and modes (as in the previous suggestion).
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e In our mechanism, we are only treating fullpixel motion search. Subpixel search
yields much better results, but when complexity scalable subpixel motion search
is introduced, there must be some allocation algorithm for managing the trade-
off between budget invested in subpixel refinement, and budget invested in other
modes.

Allocation Algorithms

Our allocation algorithm right now uses the gathered metrics directly as macroblock
weights in the budget allocation algorithm. This introduces a coupling that is both
unnecessary and may hamper quality.

During our research, we have had some interesting but inconclusive results using the
distortion metrics not directly as weights, but as a way to rank macroblocks for assign-
ment from a fixed set of weights. Unfortunately, we were unable to pursue this train of
research due to lack of time. Our ideas and initial results are included in this thesis as
Appendix B in the hopes that they will helpful to future research.

Furthermore, additional work may be done to incorporate this scalability mechanism
and frame allocation algorithms into a larger system. The allocation of complexity
from GOPs to frames is an open topic, including re-use of unused frame complexity.

Furthermore, our initial goal was to also do work regarding complexity budget allo-
cation between multiple encoders. In the same way as complexity allocation among
macroblocks can be tweaked to optimize quality, allocation of a “video encoding” bud-
get to more than one simultaneous encoder can be optimized for global quality.
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Appendix A

Allocation Algorithm Results

This appendix contains a list of all graphs for all tested video sequences. We have
concentrated on high-motion videos. See table A.1 for a list of video sequences tested,
their total and average unconstrained complexity consumption, and the unconstrained

quality achieved. All video sequences are available on the internet [12].

A.1 Proportional versus inversely proportional alloca-

tion

In this section, we show the proportional and inversely proportional variants of every
distortion-based allocation algorithm for every sequence that we examined.

As can be seen, proportional allocation performs equal or better than inversely propor-
tional allocation in all cases. The most difference can be observed in the “Bus” and
“City” sequences. “Husky” does not show a lot of difference, and “Stefan” and “Bus”

at 6000 kbps are too noisy.
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In this section, we show the results of Direct Distortion versus Displaced Distortion.

All are using proportional allocation.

There is virtually no difference between the two allocation algorithms. Because in
practice, the displacement is not very large, there is a lot of overlap of the examined
areas of the image, and the obtained differences in distortion are not significant enough

to cause large changes in allocation.
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Sequence Frames Bitrate Classification Avg complex.  Quality
Foreman 300 250 Medium motion 1.9-10° 30.84 dB
City 600 500 Medium motion 1.7-10° 31.20dB
Crew 600 250 Medium motion 2.8-10° 31.00dB
Stefan 300 1500 High motion 2.1-10° 31.06dB
Husky 250 4000 High motion, fine detail 3.6-10° 28.20dB
Bus 150 500  Very high motion 3.5-100 26.57dB
Bus 150 1500  Very high motion 2.5-10° 31.64dB
Bus 150 6000  Very high motion 1.9-10° 38.46dB

Table A.1: The list of testing sequences used and the rates tested. Each video is encoded at 30
frames per second. All videos are CIF resolution (352 x 288) with the exception of
“Stefan”, which is SIF resolution (352 x 240). Bitrate is in kbps, Quality is in dB
PSNR. Average complexity is the average unbounded complexity consumption of
each frame in the sequence, while Quality is the quality achieved at the given rate
without bounding complexity.
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A.3 Direct Distortion versus Residual

This section shows the result of the comparison between direct distortion-based allo-
cation and residual-based allocation. Both are using proportional allocation. Residual-
based allocation is equal in all cases, superior in the “Bus” sequence and slightly su-
perior in the “Crew” sequence. Again, “Bus” at 6000 kbps and “Stefan” are too noisy
to base conclusions on. However, we can see that residual-based allocation is always
equal or superior to distortion-based allocation, so should be used in all cases.
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A.4 Residual, MHM and Uniform

This section shows the comparison between Uniform Allocation, MHM allocation and
the best of our proposed algorithms, residual-based proportional allocation. Clearly, the
Residual-based allocation is always equal or superior to the other allocation methods.
Even in the noisy data of “Stefan” and “bus” at 6000 kbps this can be discerned.
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A.5 Individual Frames versus Global Results

This section shows the distinction between the global results for each video, versus the
results for individual frames. For each sequence, we show the global results, the results
for a frame with very little difference between the algorithms and a frame with a lot of
difference between the algorithms.

We can see that there is a lot of difference among the frames of one sequence, depend-
ing on how easy it is to motion-estimate the frame, and how well the predicted motion
vectors describe the actual motion in the scene. The partial ordering of the algorithms
is consistent however: every frame shows that one algorithm consequently matches or

outperforms another, independent of the accuracy of the results.
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Appendix B

Fixed Weight Allocation
Strategy

Our distortion-based allocation algorithms proposed in Section 3.3 have one thing in
common: the value measured for distortion is directly used as a weight in the propor-
tional allocation strategy. This introduces a coupling that is unnecessary and may be
harmful to efficiency. We have done some work investigating an allocation algorithm
where the measured distortion and assigned weights are decoupled, which is presented
here with the hope that it will be useful to future researchers.

B.1 Algorithm

In this proposed algorithm, we continue to estimate the complexity needs of a mac-
roblock based on a distortion metric from the previous frame. However, rather than
allocation complexity proportional to the measured distortion, we use the distortion to
sort the macroblocks by order of complexity need. We then assign each macroblock
a weight, taken in order from a fixed set of weights, such that a macroblock with a
higher distortion will have a higher weight, but not necessarily directly related to the
distortion itself.

B.1.1 Motivation

From our research in this thesis, it is clear that a higher distortion indicates a larger need
for complexity. However, it is not clear that the relative distortion among macroblocks
has a direct bearing on the relative complexity needs. A way to decouple the complexity
need identification and the budget assignment is desired.

By sorting by distortion, and assigning weights from a non-increasing distribution,
we achieve the goal that blocks with higher distortion receive more complexity, while
maintaining the freedom to modify the distribution as we see fit, to better adapt to the
video being encoded.
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Figure B.1: (a) Sample macroblock complexity consumption distribution, taken from frame 115
of the “Foreman” sequence, in complexity budget points. The macroblocks have
been ordered from most to least complexity consumption. (b) Restricted logarithmic
distribution used in experiments, in fraction of the frame budget. There are 396
macroblocks in the CIF format.

B.1.2 Weight Distribution

The weight distribution was originally derived from the natural distribution of com-
plexity budget consumption of an unbounded run of a video. Figure B.1(a) shows the
unconstrained macroblock budget consumption for a frame of the “Foreman” sequence.

We tried matching this distribution using a logarithmic function, but this yielded too
many macroblocks with a similar budget allocation, leading to very little difference
in allocation and quality very similar to the Uniform Distribution. That is why we
removed the tail of the distribution, allocating complexity only to the upper half of the
sorted list of macroblocks. The distribution that we used for the experiment is shown
in Figure B.1(b). We have not done research into the parameters of this distribution,
but for videos of CIF resolution the shape of the distribution is produced using the
following formula:

lOglo(Si)

w(i) =0.3— 10

170 (B.1)
We then normalize the values of the distribution such that they sum to 1 over the entire
number of macroblocks M, and multiply with the frame budget to obtain the mac-
roblock budgets. Let ord(m,n) return the index of macroblock m in frame n if the
macroblocks are sorted descending by metric value x,, ,, 1 < ord(m,n) < M. the mac-
roblock budget is calculated as follows:

w(ord(m,n—1))

Y, w(i)

1<i<M

Bm,n = 'Bframe(nam) (B.2)

B.2 Preliminary Results

We use the same metric for the fixed weight distribution allocation as the best algorithm
presented in the main part of this thesis, which is the Residual, and encoded the same
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Figure B.2: Proportional allocation versus allocation based on the fixed distribution for a number
of sequences. Both allocations are based on the “Residual” metric.

sequences at the same bitrates. Figure B.2 shows the two allocation strategies side-by-
side.

An interesting result can be observed: when the complexity budget is highly con-
strained, the new fixed distribution-based allocation yields higher quality. However,
after a certain tipping point, which varies per video, the proportional allocation yields
higher quality.

It seems that when the budget is restricted, it is better to focus most of this budget into
a few macroblocks that indicate the highest complexity need, in an attempt to get the
most improvement out of these macroblocks and thereby improving the overall quality
of the video.

On the other hand, our distribution does not compensate for the fact that when the
budget grows, it is grossly overallocating complexity to those few macroblocks while
still starving the other half of the macroblocks.

Nevertheless, the allocation strategy seems promising. The low-complexity results are
distinctly better and the distribution is highly modifiable. Future research is recom-
mended to address the complexity overallocation at higher budgets, which may lead to
similar or even higher quality than the proportional allocation. One possible approach
could be stretching the shape of the distribution based on the complexity budget, so
the tail becomes longer at higher budgets and the blocks at the far end are no longer
starved.

Another thing that should be considered is that during our experiments we only mea-
sure objective quality. It could be that at low complexity bounds, even though the
objective quality is higher, the subjective quality could be lower since most quality
improvement is focused into a select number of macroblocks.

61



Appendix C

Glossary

This appendix contains an overview of the terms, abbreviations and symbols used in

this thesis.

C.1 List of Terms

Term

Clarification

Complexity

Complexity Budget

Clock Cycle

Decoder

Distortion

Encoder

Frame
Frame Rate

Hadamard Transform

The time needed for a computer to execute a program.
Can be measured in instructions, clock cycles or wall-
clock time.

The maximum amount of time that a piece of software is
allowed to take. (In this work) The number of vectors that
are allowed to be examined during Motion Estimation.

Discrete unit of time in which a CPU executes
instructions.

A piece of software that can decode an encoded bitstream
according to a specific video format, and reconstruct the
original uncompressed video frames.

The difference in pixel values between a source video
frame (or block of pixels) and the encoded and decoded
version of the same frame (or block of pixels). Ideally the
distortion should be low.

A piece of software that compresses a sequence of un-
compressed video frames into an output bitstream.

A single picture in a video sequence.
The temporal resolution of the video in Hertz.

A transform similar to the Discrete Fourier Transform
(DFT) or Discrete Cosine Transform (DCT), but using
Walsh functions instead of sines.
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Term

Clarification

Macroblock

Motion Estimation

Motion Vector

Output Bitstream
Rate

Rate-Distortion Perfor-

mance

Reference Frame

Quantization

Variable Length Coding

A 16 x 16 block of pixels. Fundamental unit of video
encoding. Every frame is partitioned into macroblocks,
each of which is encoded separately.

The process of finding the displacement of a macroblock
with respect to the previous frame.

Vector that indicates the displacement of a macroblock
with respect to the previous frame. It is found using Mo-
tion Estimation.

The encoded representation of a video.

The number of bits needed to encode the video or a piece
of the video. Ideally the rate should be low.

An evaluation of the combined rate and distortion
achieved by the encoder for a certain video sequence or a
piece of the video sequence. Ideally the encoder should
achieve both a low rate and a low distortion.

The encoded and decoded version of a frame (so it is the
same as the frame received and decoded by the decoder),
which is used for motion estimation by the encoder.

The process of reducing the absolute values in the coef-
ficient matrix of a macroblock, by dividing them with a
constant Q, the quantization parameter.

A lossless compression technique where common se-
quences of bits in the input stream are represented with
short bitsequences in the output stream so they can be
represented efficiently.

C.2 List of Abbreviations

Context-Adaptive Binary Arithmetic Coding

CABAC

CAVLC Context-Adaptive Variable Length Coding
CE Consumer Electronics

CPU Central Processing Unit

C-R-D  Complexity-Rate-Distortion

DCT Discrete Cosine Transform

GOP Group of Pictures

ISO International Standards Organization
ITU-T Telecommunication Standardization Sector

63



ME Motion Estimation

MHM Motion History Matrix

MPEG  Moving Pictures Expert Group

MV Motion Vector

PMV Predicted Motion Vector

PSNR  Peak Signal-to-Noise Ratio

R-D Rate-Distortion

SAD Sum of Absolute Differences

SSD Sum of Squared Differences

TSC Timestamp Counter

UMHS  Uneven Multi-Hexagon Search

VLC Variable Length Coding

C.3 List of Symbols

Symbol Meaning Page

o Conversion factor from complexity measured in 24
budget points to complexity measured in clock cy-
cles.

B Required complexity associated with non-scalable 24
processing operations of a macroblock, in clock
cycles.

Y Complexity overhead for processing a frame, in 24
clock cycles.

B trame Complexity budget of a frame, in 16 x 16 SAD 24
computations.

B frame(n) Complexity budget of frame n. 28

B frame(n,m) Remaining complexity budget of frame n before 28
processing macroblock m.

By, Complexity budget of macroblock m in frame n 27

Bfn,,, Complexity budget of macroblock m in frame n 27
determined using proportional allocation.

B, Complexity budget of macroblock m in frame n 28
determined using inversely proportional alloca-
tion.

Conn Actual consumed complexity of macroblock m in 28
frame n, in budget points.

Crrame Complexity of encoding a frame, in clock cycles. 24
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Symbol Meaning Page

cost(u) R-D cost of a macroblock if it is encoded in mode 13
u.

D(u) Distortion obtained encoding the macroblock in 13
mode u.

F, Ratio of the area of a submacroblock in mode uto 24
the area of a 16 x 16 block.

A Weighing factor of rate versus distortion. 13

M Number of macroblocks in the frame. 24

N Number of frames in the sequence. 27

u Symbol that represents an encoding mode. 13

(0] Quantization factor of a macroblock. 11

R(u) Rate requirements for encoding the macroblock in 13
mode u.

S Maximum value of a sample. Either 255 for 8- 7
bits color information or 65535 for 16-bits color
information.

Xm,n Metric value used in complexity allocation for 27

macroblock m in frame n.
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