Exception or rule?

Rico Huijbers (499062)
2003

Abstract

In this essay, | will discuss the relatively new concept of error handling
through “exceptions”, and compare it to traditional techniques. First, |
will discuss traditional techniques for error handling, and outline the
problems that exist with these techniques. Then | will introduce and
discuss exceptions, and see how their usage solves the traditional
problems. Finally, I will discuss why traditional techniques might be
more useful than exceptions in some rare cases.

1 Introduction

Error handling has traditionally been one of the most important, and paradoxically also one of the
most underdeveloped fields of practical programming. That error handling is very important needs
little justification: in practice it is more rule than exception that software is subjected to conditions
that were not foreseen at development time, and for which regular technigues that establish
software correctness do not suffice. The requirement that software behaves gracefully in the face
of unknown conditions is also known as “robustness” [3]. To improve robustness, a lot of effort
must be put into developing the program and thinking about unforeseen conditions’, and the best
ways to handle them.

In this paper, we will take a look at traditional ways of handling erroneous or exceptional situations.
Then we will take a look at the new method of handling them through exceptions, and we will
compare the two methods extensively. In [1], Sebesta mentions the qualities readability, writability
and reliability as the most important factors of programming constructs, and programming
languages in general. We will compare traditional methods and exceptions with respect to these
gualities.

In addition to providing better readability and reliability for our software projects, we will see that
exceptions are able to cover for error situations that are not normally detectable by traditional error-
handling methods. Not only do they make error handling easier on the part of the programmer,
they also extend his error-handling capabilities altogether.

In this paper, when comparing traditional, procedural languages to new, exception-capable ones, |
will most often refer to the widely known C and Pascal, and their extended, exception-capable
counterparts, C++ and Object Pascal (Delphi).

! Unforeseen conditions are also called “exceptional” conditions, hence the term exceptions.

Exception or rule?
Rico Huijbers (499062) 1/10



2 Traditional methods of error handling

In traditional (procedural) programming languages, error handling is mostly realized through the
inspection of success values, returned by subprograms. This implies two things, namely that error
handling involves responding to the success or failure of subprograms, and that subprograms need
to be able to return those values. Before error handling, we shall first look at error reporting, which
is the way in which subprograms can signify to their caller whether their operation was successful
or whether some sort of malfunction occurred.

2.1 Traditional error reporting

Subprograms can usually return values in two ways: A value can be returned in a variable of the
actual parameter list, or it can be returned as the result of a function call. Since the use of a
variable in the parameter list requires a variable of the appropriate type to be defined, and since it
takes two statements to fill and then inspect such a variable, in the interest of writability, most
routines are written to be functions and return their success value as the function result. While this
does indeed provide a convenient way to return success values, it leads to a pollution of the
classical notion that functions and procedures are not the same. Indeed, procedures are
subprograms that perform some task, and functions are subprograms that calculate some value
without causing side effects. With this method of error reporting, however, all procedures are also
encoded as functions and the distinction between them is lost 2.

A subprogram might fail for a lot of reasons. Perhaps the subprogram call was malformed, or
contained illegal data. Perhaps the subprogram did not have enough permissions to perform the
action it intended to, or some 1/O action it performed triggered an error. Since a calling program
usually needs to know the kind of error that occurred (if not for correcting the situation itself, then
for showing a helpful message to the user of the program, so that he may correct the problem), the
error needs to be encoded in some way. A return value can indicate the kind of error that occurred
(for example, in the form of some predefined integer or string constant), or it can simply be a
Boolean value that signifies whether the subprogram call was successful or not. The exact nature
of the error can then usually be looked up in some kind of central error repository, for example
through a function call like GetLastError [2].

2.2 Traditional error handling

Calling programs can inspect the success values returned by subprograms, and select a branch of
execution depending on whether or not the subprogram call was successful. The most common
branch selection used is either to keep carrying out the steps of the subprogram’s algorithm, or
abort whenever an error occurs and indicate failure to the program’s caller. If the calling program is
itself a subprogram, aborting usually means discontinuing the subprogram’s execution and
returning an error value. If the calling program is a main program, aborting entails displaying some
kind of error message to the program’s caller (the user) and then halting program execution.

In some rare conditions, a calling program can decide to change the calling conditions and try the
call again, until the call succeeds or enough tries have been made to warrant the guess that the
call will not succeed anymore. Whatever the calling program'’s choice, it is required that the
program act upon the success values received from subprograms, either by aborting or trying
again. This ensures that the result of actions is never ignored, and increases program reliability
and robustness.

In Pascal, a sample call and error check in a main program might look like this:

% Since C does not have “pure” procedures, only functions that optionally return nothing, the distinction is not
so large there. However the theoretical grounds for rejecting this method remain.

Exception or rule?
Rico Huijbers (499062) 2/10



Result := PerformOperation (SomeParameters);
if Result = Success then

WriteLn (‘Operation was succesful!’)
else

WriteLn (‘Operation failed: ’, Result);
or as it is usually written:

if PerformOperation (SomeParameters) = Success then
WriteLn (‘Operation was successful!’)

else
WriteLn (‘Operation failed!’);

Note that in the second case the success value is not saved, and can therefore not be shown to
the user. At this point, the user must guess what went wrong inside the subprogram. And even if
the return value is saved and displayed, it is usually implemented as an integer constant. Just
showing some integer value to the user is almost as bad as not showing any reason at all, since
most (regular) users have no information about the error the integer is meant to represent.

Now, let’s see what happens when there are multiple steps to execute, each one depending on the
previous one’s success. This is a very common case in which various initializations of subsystems
have to be performed before the actual desired action can be carried out. Written in C, such a
sequence might look like this:

if (operationl (paraml)) {
if (operation2 (param2)) {
if (operation3 (param3)) {
printf (“All operations successful”);
} else
printf (“Operation 3 failed: %d”, GetLastError());
} else
printf (“Operation 2 failed: %d”, GetLastError());
} else
printf (“Operation 1 failed: %d”, GetLastError());

As can be seen in this example, the readability and especially the modifiability of such a structure
suffer severely from the nesting of several of such error handling clauses.

These examples show how error handling might look in a main program. In case an error occurs,
execution is not continued and a descriptive error message is shown to the user. In subprograms,
it is usually undesirable to directly output error information, and subprogram result must be
signified to the caller. Again in C, a subprogram that performs initialization of some subsystem
might look like this, assuming the initialization required consists of two steps:

int initialize() {
if (subsystem init stepl() == NO_ERROR) {
if (subsystem init step2() == NO_ERROR) {
return NO ERROR;
} else

return ERRfSTEPZiFAILED;
} else
return ERRfSTEPliFAILED;

As can be seen, although the possible errors occur in subsystem init stepl and
subsystem init step2, we have to check the result value of each subprogram, abort if it failed
and let our own success value depend on the result of each subprogram. In the next section, we
will see how we can drastically improve on this subroutine through the use of exceptions.

Exception or rule?
Rico Huijbers (499062) 3/10



Finally, since the only way to set a success value is to explicitly set or return the appropriate status
value through user code, this method of error handling is simply unable to cope with hon-software
detectable errors (such as hardware failure, or invalid pointer dereferencing).

2.3 Traditional error handling summary
In summary, the problems with traditional error handling are:

Distinction between procedures and functions is lost

Integer error values do not carry meaningful information

Nesting of several handlers detracts greatly from readability and modifiability

Error propagation must be explicitly implemented at every level of the subprogram call
chain

e Traditional handling is unable to cope with certain classes of errors

Exception or rule?
Rico Huijbers (499062) 4/10



3 Exceptions

Enter exceptions. Exceptions are the new standard of error handling, which overcome all of the
problems of traditional error handling outlined in the previous section.

3.1 What are exceptions?

Exceptions are signals indicating that some kind of erroneous event has occurred during the
execution of a program. Exceptions can originate from different sources. They can be generated by
user code, the language run-time, the operating system, or even by the hardware. The fact that
error conditions detected and signaled from outside the application can be handled through user
code is a very powerful improvement. It allows elegant handling of conditions that were not
normally detectable in application software, such as the dereferencing of null- or dangling pointers.

Most contemporary languages supporting exceptions also include support for object-orientation.
Therefore, although this is not a requirement, in most languages exceptions are implemented as
an object. This has the added benefit that various attributes describing the conditions of the error in
more detail can be attached to the exception. This information is then available for inspection, or
display to the user, at the moment the error condition is handled.

3.2 Error reporting through exceptions

The most important characteristic of exceptions is that they can be raised®. Raising an exception
indicates that the error condition it symbolizes has occurred. In most languages, raising an
exception also entails creating an exception object to hold the details for the exception. An
example from Delphi:

raise Exception.Create(‘An error occurred’);

As can be seen, the exception has a description of the error that occurred as a very prominent
attribute. In most languages, programmers can define their own classes of exceptions, and
associate attributes with them. In such a case, an exception might be raised like this:

raise EFileNotFound.Create(‘infile.dat’, ‘reading’);

Although this is a bit of a contrived example, it shows that both the filename in question and the
action desired on it can be encoded in an exception object. Usually, however, a descriptive
message string suffices (since all desired extra attributes can simply be encoded in such a string).

At the moment an exception is raised, the normal execution of a program is aborted, and a search
for a handler for the exception is started. If no handler is found, the entire program is aborted with
an error condition. This kind of behaviour ensures that no program segments are executed if their
preconditions are not satisfied (provided exceptions are thrown if this is the case).

Consider the following code fragment, where DoAction raises an exception if the call to it was not
successful:

DoAction;
{ DoAction was successful }

®In C++, raising an exception is called throwing it. Conversely, handling a thrown exception is called
catching it.

Exception or rule?
Rico Huijbers (499062) 5/10



It is easy to see that the assertion DoAction was successful always holds: if DoAction is executed
and succeeds, execution proceeds normally and the assertion is indeed true. However, should
DoAction fail, it raises an exception. At that point, execution is aborted, and the location of the
assertion is never reached, thus it is never evaluated. In fact, the assertion is only evaluated
whenever it would evaluate to true.

This important fact tells us two more things about exceptions. First, success of a subprogram that
uses exceptions for its error reporting can be easily determined from the fact that execution
proceeds as usual, and failure can be determined from the fact that execution is aborted.
Therefore, we do not need an extra return value to return the success result of a subprogram. This
means we can go back to the classical notions of procedures and functions having distinct
semantic meanings. Recall that we used to make every subprogram a function so it could easily
return a success value — this “trick” is no longer necessary when exceptions are available.

Second, reconsider the example from section 2.2 where we had three subprograms, operationl,
operation2 and operation3, each depending on the successful prior execution of the previous
one. Using traditional techniques we had to build elaborate branching structures around the
operations to guard their execution. However, with exceptions guaranteeing that execution
proceeds only if the subprograms are successful, we can simply concatenate the statements and
have the exact same behaviour:

operationl (paraml) ;

{ operationl was successful }
operation?2 (param?) ;

{ operation?2 was successful }
operation3 (param3) ;

{ operation3 was successful }

{ all operations were successful }

Obviously, the comments are included only for clarity. Omitting them will make the code fragment a
lot more concise and obviously elegant.

Assuming that the exceptions raised in each subprogram contain enough information for the user
to determine the origin and cause of the erroneous condition, we don’t even need to bother
reflecting this information in calling programs, since the exceptions will provide that information at
the moment they are handled. We will discuss handling exceptions in the next section.

3.3 Error handling through exceptions

However nice it is to be able to just concatenate statements and rest assured that each one will
complete successfully before the next one is called, it is undesirable to have a program abort at the
first error condition. That's why exceptions can be handled, by means of so-called exception
handlers.

Most programming languages have two kinds of exception handlers. At least C++ and Delphi, the
languages we discuss here, do. The two exception handlers reflect two different ways of
responding to an exception being raised. Both handlers are block statements that guard a block of
code, and respond in a specific way to exceptions that might occur inside the block. They are
called try-finally and try-except handlers. Both handlers will be discussed here in their Delphi
incarnation. C++ has equivalent handlers with slightly different but comparable syntax.

The try-finally handler is a block statement that looks like this:

try
try statements

Exception or rule?
Rico Huijbers (499062) 6/10



finally
finally statements
end

Its semantics are as follows: first, the statements in try statements are executed in the normal
way. Upon exit of the block, the statements in finally statements are always executed. What
this means is that no matter how control leaves the try-block, by flowing off the end of the block or
by an exception causing an abort, the statements in the finally-block are always executed. This
exception handler is useful when allocated resources have to be guarded. Since in a language with
exceptions there is no hard guarantee that any part of a statement sequence is ever reached, this
might be a possible cause for memory leaks, as in the following example:

AllocateResources;
{ other statements }
ReleaseResources;

Since any of the intermediate statements contained in { other statements } might raise an
exception, causing abortion of the block, it is possible that the allocated resources are never freed.
The solution is therefore to guard the resources with a try-finally block:

AllocateResources;
try
{ other statements }
finally
ReleaseResources;
end;

This ensures that even if an exception is thrown in the try-block, the allocated resources are
released before the exception is propagated to other handlers. This handler does not really provide
any distinct improvement over traditional error handling code, since the same behaviour can be
emulated using traditional control structures. However, in the face of exceptions and their potential
to abort code, such a construct is required, and at the same time it does make the fact that a
resource is being explicitly guarded clear to any later readers of the code. It does, therefore,
increase code readability.

The other exception handler block, called a try-except block, follows the same form as the try-
finally block:

try

try statements
except

except statements
end

Again, the statements in the try-block are guarded and the statements in the except-block are
executed whenever an exception occurs. However, with this handler, the statements in the except-
block are executed only if an exception occurs, and are assumed to handle the exception. After the
execution of the except-block has finished (assuming no new exceptions are raised inside it), the
exception that caused execution of the except-block is considered handled and will no longer be
propagated. Execution will resume at the next statement after the end. This exception handler is
designed to actually respond to error conditions, and it can be used in a variety of ways. It can be
used to catch and ignore, or catch and correct error conditions. It can be used to show error
information to the user, or to write such information to an error log. It can be used to guard
resources when multiple resources need to be allocated atomically (a case in which try-finally
would be inappropriate). When nested inside a loop, it can be used to retry subprogram calls until
success is achieved. A full treatment of all possible patterns of error handling and resource

Exception or rule?
Rico Huijbers (499062) 7110



guarding falls outside the scope of this paper. | plan to write a later paper about this subject,
however at the moment we will leave it at this.

Except-blocks do not need to handle all possible exceptions. Indeed, when rigorous exception
handling is a goal, try-except blocks that handle everything are frowned upon. Generally, it is
better to respond to known and handleable exceptions, and let unknown or unforeseen exceptions
up to other handlers. Except-blocks can specify which exception types to catch, and what code to
execute for each exception type. Uncaught exceptions are left unhandled and are propagated up
the handler chain.

We have not yet discussed exception propagation. Whenever an exception is thrown, control
passes to the closest enclosing exception handler. If this handler catches the particular type of
exception, and successfully executes its except-block, the exception is considered handled and
execution resumes at the next statement after the handler. If the exception is not handled, control
passes to the next enclosing exception handler, and so forth, until the exception is either handled
or the topmost exception handler has failed to handle the exception. At that point, control passes to
a default exception handler of either the language or the operating system. At that point, both of
these exception handlers have little other choice than aborting the program and displaying some
indication of the error to the user.

The fact that exceptions are implicitly propagated from handler to handler with no regard for the
code in between provides yet another advantage of exceptions over traditional error handling
techniques: Intermediate subprograms that do not want to concern themselves with either error
reporting or error handling do not need to contain any extra error-related code. This reduces code
clutter and improves all qualitative factors of readability, writability and reliability of the code. With
this in mind, we can rewrite the initialize routine from section 2.2 like this:

void initialize() {
subsystem init stepl();
subsystem init step2();

}

The initialize routine itself need not be concerned which, if any, of the initialization calls fails. If
one should fail, its raised exception will propagate through to any exception handler initialize’s
caller will have prepared, where the failure to initialize will be handled accordingly.

3.4 Exception-based error handling summary

It is generally recognized that one of the greatest benefits of exceptions is reduced code clutter,
and clear separation of error handling code from normal program code through except-blocks.
Furthermore, all the problems with traditional error handling outlined in section 2 can be overcome
by the use of exceptions.

To re-iterate, we will repeat the summary of problems from section 2.3 and present the solution
that exceptions provide with each point.

Traditional error handling Exception-based error handling

Distinction between procedures and functions This is not necessary, since errors are reported
is lost by ways other than return values.

Integer error values do not carry meaningful Exception objects carry all relevant information
information within them

Exception or rule?
Rico Huijbers (499062) 8/10



Traditional error handling Exception-based error handling

Nesting of several handlers detracts greatly Handlers need only be nested when explicit
from readability and modifiability handling is desired. Subprogram calls that
depend on one another can simply be
concatenated.
Error propagation must be explicitly Error propagation is implicit, and subprograms
implemented at every level of the that do not handle or generate errors do not
subprogram call chain need to contain any error-related code
Traditional handling is unable to cope with Even exceptions generated outside the
certain classes of errors application can be handled in a uniform way
inside it.

4 The benefits of traditional methods

Despite the apparent benefits of exception-based error handling, it still isn’t for every case. Most
notably, in the case of a “quick hack” program or script, error handling is usually left out altogether.
In such a case, functions that employ traditional error-handling will behave reasonably in the face
of error conditions, for example by returning or outputting zero, or an empty string, or performing
no action. By contrast, a single exception would “crash” the program. Especially in a scripting
environment, where the program is protected from hard crashes by things such as faulty pointers, it
is an attractive prospect to simply fudge result codes. In case of error conditions, faulty output can
easily be recognized and ignored by human users. What the user does not want, however, is the
program bailing out.

It can be argued that leaving out error handling altogether is wrong, and in any case in such a
quick hack program, inserting some extra code just to explicitly ignore exceptions is no big
problem. In any case, it is still good to be knowledgeable of situations where exceptions might be
more trouble than they’re worth. It should be noted, however, that such situations are few and far
between.

Exception or rule?
Rico Huijbers (499062) 9/10



5 Conclusion

Ultimately, there is no single “right” construct for every job. Just as with almost every aspect of
programming, or engineering in general, there is the concept of the right tool for the right job,
meaning that no single solution is best in all cases®. It is therefore important to be aware of several
alternatives, so that in the light of a problem to solve, the best applicable solution can be chosen.

We have seen that, in serious software projects of non-negligible size, where errors cannot just be
“swept under the carpet”, exceptions can provide a significant benefit over traditional error handling
techniques. They provide a simple, standardized, and elegant way of signaling and resolving error
conditions. Usually, the same effect can be reached with less lines of code, and normal and error-
resolving code is clearly separated. Furthermore, an application will be able to survive in the face
of before irresolvable conditions.

The benefits of exceptions are steadily more recognized by the general audience. For example, a
popular language for web scripting, PHP, started as a simple macro language. After it became
popular, it started to evolve more in the direction of a full-fledged programming language, albeit still
focused on development for the World Wide Web, and still very much aimed at quick-‘n-dirty
development. Right now it is maturing up, and will even include support for exceptions in its next
major release [4].

If | may speak from personal experience, learning to program with exceptions takes some practice,
but once you get used to it, you will never want to do without them again.

6 References

[1] Robert W. Sebesta, Concepts of programming languages, 2004, Sixth Edition, International
Edition, ISBN 0-321-20458-1, pages 8-18

[2] Example taken from the Win32 API. A reference of the method can be found here:
http://msdn.microsoft.com/library/en-us/debug/base/getlasterror.asp

[3] Carlo Ghezzi, Mehdi Jazayeri, Dino Mandioli, Fundamentals of Software Engineering, 2003,
Second Edition, International Edition, ISBN 0-13-099183-X, pages 17-20

[4] A modification list of the new PHP engine can be found here. Among them is a description of
the new support for exceptions: http://www.php.net/zend-engine-2.php

* On a sidenote, if more people would realize this, we could put an end to the tiresome yet heated debates of
which software system is better, of which the most well-known debates concern operating systems and
programming languages.

Exception or rule?
Rico Huijbers (499062) 10/10


http://msdn.microsoft.com/library/en-us/debug/base/getlasterror.asp
http://www.php.net/zend-engine-2.php

