Boot Camp JavaScript

http://rixOr.nl/bootcamp Sioux, March 31,201 |

BONT
MM&y wanme

http://rix0r.nl/bootcamp
http://rix0r.nl/bootcamp

Agenda

Part |:JavaScript the Language
Short break

Part 2: JavaScript in the Browser

May 1995
Dec 1995
Aug 1996
Nov 1996

Dec 1998
Mar 1999
Dec 2000

2004
Feb 2005

2005
Apr 2006

Ristory

LiveScript is written by Brendan Eich for NN2
Renamed to “JavaScript” in a deal with Sun
Microsoft copies JScript for |E 3.0
Netscape goes shopping for a standard
Ecma — ECMAScript

dynamicdrive.com

OWA team invents Xml.HTTP (IE 5.0)
Firefox copies XmlHttpRequest

GMail

The term “AJAX"” is invented

Google Maps

XmlHttpRequest standardized

Where!

Where!?

Where!?

—Y 1o
EEEE
FRO® g g

gNe— NS :
Cs™%

amae EO00
DEEe
PEO® |o:gn e

828" h
CETR

Where?

0 L —
amep P00

I
FaO® v um

ax-— %
TETR

Tooling support

Firebug
(Firefox)

WebKit Console
(Chrome, Safari)

R . web relopmen volvet
h.siteTithe 3 tentinne ¢ L ¢ s S
Console HIML sSS SCrgt DO het - Style Layout oo™ -
» e : A o ' steel c >
i v
. < - L e~
Inherited from -
4~ . a2 s . s o !
z 3 v
¢ ¥ Inherited from g
e v
¥ .
= | Resocurces L_’Saipu 5 .ﬂm A | Profiles & , Storage ,Cenuh Q
¥ Styles -
“"tho” topmargine"3* ma ghte"3"> 0 O
></div> Bt o
1 tphdr>.</div> : r Attrib o i -
= X red ge"csi"” style="display: ' Namee
”!e ':.) .cl) 18 Csl y play:none] widths 108891;
Csi1"></textares>
“«textarea id«"hcache" style«"display!none™ names w L i
“hcache"></textares> » overflow: hidden;
<textarea id«"wwcache" style«"display:imone™ name widtine-1088pws 4
“wecache"></textareca> v -~
Q hami body#girtbo diwient divear_container - divicenter <ol cwires.med diviwes o I diving
Resource interpreted as image but transferred with MIME type text/himl. irghove
Resource interpreted a3 image but transferred with MINE type text/hisl,
Resource interpreted as image but transferred with MIME type text/himl. ve f
Resource interpreted as image but transferred with MIME type text/hisl. Xec o
Resource interpreted as image but transferred with MINE type text/hisl, 204 -
Barniieorn tataravnrnd sr tmaan e Seonnrfanvenns Lok MYNME dnn 2aut faem)

e > 0 € Errors Warnings Logs

Part |

JavasScript the Language

Ancestry

Functions from Scheme
Prototypes from Self
Syntax from Java

Event-driven model from HyperCard

Types

String "hello™, 'world’ Object { hello: 'world' }

1, 3.14, 2el1l,
Number e Array [L, 2, 3
Boolean true, false Function function(x) { return x*x; }
null null

Undeﬁned undefined

A little word about
functions

Functions are first-class!

function greet() {
alert('Hi1 there!');

¥

Is the same as:

var greet = function() {
alert('Hi there!');

¥

Semicolon insertion

function foo(x)

{
var y = x*2
return
{
X: X,
-y
}
}

alert(foo(3)) // 7

Semicolon insertion

function foo(x)

1
var y = Xx*2
e
X: X,
y-y
¥
¥

alert(foo(3)) // 7

Semicolon insertion

function foo(x)

i
var y = x*2
JI"zeJCU'“ﬂ ; C— ParseError!
XWX,
y-y
5
5

alert(foo(3)) // 7

Semicolon insertion

function foo(x) {
var y = x*2

return {
X: X,
Y-y
}

¥

alert(foo(3)) // { x: 3, y: 6 }

Use K&R style braces!

(5

Objects & Prototyping

Objects

Object is a property bag (dictionary):

world['greeting'] = 'hello’;
world.greeting = 'hello’;
world = { greeting: 'hello' };

Methods are simply values that happen to be
callable:

world.greet = functionChello) {
alertChello + " world!");

e

world.greet('Cheerio’);

Objects are open

All object members can always be replaced.

How does a method know on which object it is
invoked? (Answer: this)

earth.age = 4e9;
earth.birthday = function() {
this.age++;

i

earth.birthday(); // 4000000001

Exercise |

Add a sum() method to an array

http://rixOr.nl/bootcamp

Hints:

Use this to refer to the current object.

Array iteration:

for (var 1 = 0; 1 < array.length; 1++) {
alert(Carray[1]);
'

“this” is dynamically
bound :)

Same birthday, different object.

dog.age = Z;
dog.birthday = earth.birthday;

dog. O;
(dog.age); // 3

Bound at moment of invocation.

“this” is dynamically
bound :(

Only if you call object.method() exactly:

dog.age = 3;
dog_birthday = dog.birthday;

dog_birthday();
alert(dog.age); // 7?

alertCage); // ?

“this” is dynamically
bound :(

Only if you call object.method() exactly:

dog.age = 3;
dog_birthday = dog.birthday;

dog_birthday();
alert(dog.age); // ?a

alertCage); // ?

“this” is dynamically
bound :(

Only if you call object.method() exactly:

dog.age = 3;
dog_birthday = dog.birthday;

dog_birthday();
alert(dog.age); // ?a

IR CUDIVIANE NoN (“undefined + 1”)

(Should have been ReferenceError)

“this” is dynamically
bound :(

Only if you call object.method() exactly:

dog.age = 3;
dog_birthday = dog.birthday;

dog_birthday();
alert(dog.age); // ?a

IR CUDIVIANE NoN (“undefined + 1”)

(Should have been ReferenceError)

We'll see a solution later on!

JavaScript Object Pattern

Invoke a function with new, and it gets called on
a new object (as the constructor):
function Dog(name) {

this.age Q;
this.name = name;

¥

var pooch = new Dog('pooch');
alert(pooch.age); // 0

Prototyping

Mechanism for code reuse.
No classes.

(But you can emulate classes if you want to)

Prototype chain

name "world"
function () {
reet alert("Hello " +
9 this.name);
name "earth”)
age 4.5E9
earth. (); // "Hello earth"

Setting the prototype

nrototype attribute of constructor function:

World.prototype.greet = /* ... */;
Earth.prototype = new World();

var earth = new Earth(Q);
earth.greet();

The prototype of the object is set to whatever
the prototype attribute of the Earth function

points to.

Exercise 2

The Counter object

Write a constructor for an object that will
return sequential numbers.

Hints:
Initialize the object in the constructor.

Use the prototype to share methods
between objects.

Setting the prototype,
the old way

name "world"
Worl
orld() function () {
— R alert("Hello " +
prototyp o greet this.name);
Earth() s E I E
prototype @

name | "earth"

Setting the prototype,
the old way

Useless extra object in the inheritance chain.

If you forget ney, it’s a regular function call
and won’t do what you want!

Assignments to Function.prototype.whatever
are quite ugly.

Setting the prototype,
the new way

Object.create(proto, properties):

var world = {
name: 'world’,
greet: /* ... */
¥

var earth = Object.create(world, {
name: 'earth’

R

earth.greet(); // ‘Hello earth’

Setting the prototype,
the new way

Prototypes are open

Prototypes are just objects, and hence open
as well!

Which object is the prototype cannot be
changed after instantiation, but the members
of the prototype can!

Exercise 3

Monkey patching

Adding useful methods to built-ins
like String or Array.

(In this case, add the sum() method from
exercise | to all arrays)

Used a lot by JavaScript libraries to paper over
browser incompatibilities!
(For example, ...)

Advantages of
prototyping

Lightweight and flexible

Some patterns are much easier with
prototypes (factory, prototype®,
decorator, ...)

Prototypes can emulate classes but not the
other way around!

) Well duh!

Functions & Closures

Functions

Functions are first-class

Functions are functions

Functions are methods
Functions are constructors

Functions define scope

Scope

By default, everything goes in
the “global object”.

No modules!

Undeclared variables go in
global scope!

Only function scope exists.

“this” is dynamically bound.

Undeclared variables go
in global scope

function foo() {
a = 1g

¥

function bar() {
alert(a);
¥

foo();
bar(); // ?

Undeclared variables go
in global scope

function foo() {
a = 1g

¥

function bar() {
alert(a);
¥

foo();

bar(); // 7 a

Undeclared variables go
in global scope

function foo() {
var a = 1;

¥

function bar() {
alert(a);
¥

foo();
bar(); // ?

Undeclared variables go
in global scope

function foo() {
var a = 1;

¥

function bar() {
alert(a);

¥

foo();

Undeclared variables go
in global scope

function foo() {
var a = 1;

¥

function bar() {
alert(a);

¥

foo();

Always use var!

Function scope

var a = 1;

function foo() {
alert(a); // 7
Vi g o=
alert(a); // 7
5

foo();

Function scope

var a = 1;

function foo() {
alert(a); // 7
var a = 2;

alert(a): // 7 a
}

foo();

Function scope

var a = 1;

function foo() {

teri@; 7/ 7

Vol a=—n2"

alert(a): // 7 a
}

foo();

Closures

Functions retain references to the
environment of their definition

var make_greeter = function(greeting) {
return function(who) {

alert(greeting + " ' + who);

}
s

var briton = make_greeter('Cheerio’);
briton('mate’); // Cheerio mate
briton('old chap'); // Cheerio old chap

Closures

Functions retain references to the
environment of their definition

var make_greeter = function(greeting) {
return function(who) {

alert(greeting + ' ' + who);

}
s

var briton = make_greeter('Cheerio’);
briton('mate’); // Cheerio mate
briton('old chap'); // Cheerio old chap

Immediately invoked
functions = modules

var days = (function() {
var names = ['Mon', 'Tue', '"Wed', 'Thu',
"Fr1', 'Sat', 'Sun'];

return {
name: function(nr) { return names[nr]; },
nr: function(nm) { return names.indexOf(nm); }
5
) ;

alert(days.name(3)); // 'Thu’
alert(days.nr('Thu')); // 3

Exercise 4

Closures can emulate objects

Rewrite the Counter object from exercise 2
as a closure.

Hint:

An outer function creates a scope with
private variables and returns an inner
function that provides access to this scope.

Closures close over
variables, not values

var funcs = [];

for (var 1 = 0; 1 < 10; 1++) {
funcs.push(function() { alert(i); });
5

funcs[0]1(); // 77

Closures close over
variables, not values

var funcs = [];

for (var 1 = 0; 1 < 10; 1++) {
funcs.push(function() { alert(i); });
¥

funcs[0]1(); // 77 m

Closures close over
variables, not values

var funcs = [];
for (var 1 = 0; 1 < 10; 1++) {

funcs.push(function() { alert(i); });
¥

funcs[0]1(); // 77 m

Every function has a reference to the same 1!

Function calls make fresh
variables

var funcs = [];

for (var 1 = 0; 1 < 10; 1++) {
(function(jy) {
funcs.push(function() { alert(j); });
} {GPN

funcs[0](); // 0

First-class functions

Convenient callbacks

Very useful for asynchronous programming.

var screen;

retrieveFromNetwork(function(result) {
screen.display(result);

1)

First-class functions

Capabilities

Fine-grained access control to objects.

counter.next();
counter.reset();

var X = new Collaborator(counter.next);
X .doSomething();

First-class functions

Functional programming

Abstract out behavioral patterns.

var xZ2 = function(x) { return x * 2; }

var a k122l 31
var b = a.map(x2);
// b =1[2, 4, 6]

First-class functions

Higher-order functions

Functions that take, manipulate and return
other functions.

(Practical example and exercise
on the next slides)

Wrap existing methods

// Decorate function call with logging.
function add_logging(object, member) {
var fn = object[member];

object[member] = function() {
alert(member + ' called.');
fn.apply(this, arguments);

¥

add_logging(Array.prototype, 'push');

[1.push(1); // 'push called.'

Exercise 5 (optional)

Memoization

Write a higher-order function that makes
arbitrary functions more efficient by caching
their results.

Binding of “this”

this will only be bound if you
call object. () exactly.

An inner function in a method will lose the
reference to this!

Binding of “this”

Object.prototype.method = function() {
this.x = 0;
var inc = function() {
this.x++;
Iy
1nc();
alert(x); // ?
i

You'll usually pass inc away as a callback (and it
will fail).

Binding of “this”

Object.prototype.method = function() {
this.x = 0;
var inc = function() {
this.x++;

Iy §

1ncQ);

alert(x); // ? n
i

You'll usually pass inc away as a callback (and it
will fail).

Binding of “this”

Object.prototype.method = function() {
this.x = 0;

var ln(_: = funct inc() called without object so
this.x++; ‘this’ got bound to global
}: object.

1nc();

alert(x); // 7? n

You'll usually pass inc away as a callback (and it
will fail).

-

Capture “this” in closure

Object.prototype.method = function() {
this.x = 0;
var self = this;
var inc = function() {
self.X++;
¥
1nc();
alert(x); // 1

Passing around methods

MooTools has () method that retains
the reference to this:

dog.age = 3;
dog_birthday = dog.birthday. (dog);

OF
(dog.age); // 4

jQuery doesn’t but we can make it!

bind() function

Function.prototype.bind = function(inst) {
var fn = this;
return function() {
fn.apply(inst, arguments);
¥
¥

Closes over inst, the instance to be applied to,
as well as this.

Implicit type conversions

false == false // true

false == 0 // true
'Q' == // true
7h == false // true
'Q' == false // true
'Q' == // false

If A == Band B == C then A == ¢ doesn’t
hold!

Use -—= for strict equality checking.

Good Parts

Literals for Objects, Arrays, Functions
Closures
Duck typing

Flexible object pattern

Bad parts

Global namespace by default
Implicit type conversions
Semicolon insertion

Binding of “this”

Coffee Break

